首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Transgenic mice expressing mutated amyloid precursor protein (APP) and presenilin (PS)-1 or -2 have been successfully used to model cerebral β-amyloidosis, one of the characteristic hallmarks of Alzheimer''s disease (AD) pathology. However, the use of many transgenic lines is limited by premature death, low breeding efficiencies and late onset and high inter-animal variability of the pathology, creating a need for improved animal models. Here we describe the detailed characterization of a new homozygous double-transgenic mouse line that addresses most of these issues.

Methodology/Principal Findings

The transgenic mouse line (ARTE10) was generated by co-integration of two transgenes carrying the K670N/M671L mutated amyloid precursor protein (APPswe) and the M146V mutated presenilin 1 (PS1) both under control of a neuron-specific promoter. Mice, hemi- as well as homozygous for both transgenes, are viable and fertile with good breeding capabilities and a low rate of premature death. They develop robust AD-like cerebral β-amyloid plaque pathology with glial inflammation, signs of neuritic dystrophy and cerebral amyloid angiopathy. Using our novel image analysis algorithm for semi-automatic quantification of plaque burden, we demonstrate an early onset and progressive plaque deposition starting at 3 months of age in homozygous mice with low inter-animal variability and 100%-penetrance of the phenotype. The plaques are readily detected in vivo by PiB, the standard human PET tracer for AD. In addition, ARTE10 mice display early loss of synaptic markers and age-related cognitive deficits. By applying a γ-secretase inhibitor we show a dose dependent reduction of soluble amyloid β levels in the brain.

Conclusions

ARTE10 mice develop a cerebral β-amyloidosis closely resembling the β-amyloid-related aspects of human AD neuropathology. Unifying several advantages of previous transgenic models, this line particularly qualifies for the use in target validation and for evaluating potential diagnostic or therapeutic agents targeting the amyloid pathology of AD.  相似文献   

3.
Amyloid plaques are a key pathological hallmark of Alzheimer’s disease (AD). The detection of amyloid plaques in the brain is important for the diagnosis of AD, as well as for following potential amyloid targeting therapeutic interventions. Our group has developed several contrast agents to detect amyloid plaques in vivo using magnetic resonance microimaging (µMRI) in AD transgenic mice, where we used mannitol to enhance blood brain barrier (BBB) permeability. In the present study, we used bifunctional ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, chemically coupled with Aβ1-42 peptide to image amyloid plaque deposition in the mouse brain. We coupled the nanoparticles to polyethylene glycol (PEG) in order to improve BBB permeability. These USPIO-PEG-Aβ1-42 nanoparticles were injected intravenously in AD model transgenic mice followed by initial in vivo and subsequent ex vivo μMRI. A 3D gradient multi-echo sequence was used for imaging with a 100 µm isotropic resolution. The amyloid plaques detected by T2*-weighted μMRI were confirmed with matched histological sections. The region of interest-based quantitative measurement of T2* values obtained from the in vivo μMRI showed contrast injected AD Tg mice had significantly reduced T2* values compared to wild-type mice. In addition, the ex vivo scans were examined with voxel-based analysis (VBA) using statistical parametric mapping (SPM) for comparison of USPIO-PEG-Aβ1-42 injected AD transgenic and USPIO alone injected AD transgenic mice. The regional differences seen by VBA in the USPIO-PEG-Aβ1-42 injected AD transgenic correlated with the amyloid plaque distribution histologically. Our results indicate that USPIO-PEG-Aβ1-42 can be used for amyloid plaque detection in vivo by intravenous injection without the need to co-inject an agent which increases permeability of the BBB. This technique could aid the development of novel amyloid targeting drugs by allowing therapeutic effects to be followed longitudinally in model AD mice.  相似文献   

4.
We have undertaken an integrated chemical and morphological comparison of the amyloid-beta (Abeta) molecules and the amyloid plaques present in the brains of APP23 transgenic (tg) mice and human Alzheimer's disease (AD) patients. Despite an apparent overall structural resemblance to AD pathology, our detailed chemical analyses revealed that although the amyloid plaques characteristic of AD contain cores that are highly resistant to chemical and physical disruption, the tg mice produced amyloid cores that were completely soluble in buffers containing SDS. Abeta chemical alterations account for the extreme stability of AD plaque core amyloid. The corresponding lack of post-translational modifications such as N-terminal degradation, isomerization, racemization, pyroglutamyl formation, oxidation, and covalently linked dimers in tg mouse Abeta provides an explanation for the differences in solubility between human AD and the APP23 tg mouse plaques. We hypothesize either that insufficient time is available for Abeta structural modifications or that the complex species-specific environment of the human disease is not precisely replicated in the tg mice. The appraisal of therapeutic agents or protocols in these animal models must be judged in the context of the lack of complete equivalence between the transgenic mouse plaques and the human AD lesions.  相似文献   

5.
Alzheimer´s disease (AD) is the most common neurodegenerative disorder. AD neuropathology is characterized by intracellular neurofibrillary tangles and extracellular β-amyloid deposits in the brain. To elucidate the complexity of AD pathogenesis a variety of transgenic mouse models have been generated. An ideal imaging system for monitoring β-amyloid plaque deposition in the brain of these animals should allow 3D-reconstructions of β-amyloid plaques via a single scan of an uncropped brain. Ultramicroscopy makes this possible by replacing mechanical slicing in standard histology by optical sectioning. It allows a time efficient analysis of the amyloid plaque distribution in the entire mouse brain with 3D cellular resolution. We herein labeled β-amyloid deposits in a transgenic mouse model of cerebral β-amyloidosis (APPPS1 transgenic mice) with two intraperitoneal injections of the amyloid-binding fluorescent dye methoxy-X04. Upon postmortem analysis the total number of β-amyloid plaques, the β-amyloid load (volume percent) and the amyloid plaque size distributions were measured in the frontal cortex of two age groups (2.5 versus 7-8.5 month old mice). Applying ultramicroscopy we found in a proof-of-principle study that the number of β-amyloid plaques increases with age. In our experiments we further observed an increase of large plaques in the older age group of mice. We demonstrate that ultramicroscopy is a fast, and accurate analysis technique for studying β-amyloid lesions in transgenic mice allowing the 3D staging of β-amyloid plaque development. This in turn is the basis to study neural network degeneration upon cerebral β-amyloidosis and to assess Aβ -targeting therapeutics.  相似文献   

6.
Mitochondrial dysfunction is one of the early pathological features of Alzheimer''s disease (AD). Accumulation of cerebral and mitochondrial Aβ links to mitochondrial and synaptic toxicity. We have previously demonstrated the mechanism by which presequence peptidase (PITRM1)‐mediated clearance of mitochondrial Aβ contributes to mitochondrial and cerebral amyloid pathology and mitochondrial and synaptic stress in adult transgenic AD mice overexpressing Aβ up to 12 months old. Here, we investigate the effect of PITRM1 in an advanced age AD mouse model (up to 19–24 months) to address the fundamental unexplored question of whether restoration/gain of PITRM1 function protects against mitochondrial and synaptic dysfunction associated with Aβ accumulation and whether this protection is maintained even at later ages featuring profound amyloid pathology and synaptic failure. Using newly developed aged PITRM1/Aβ‐producing AD mice, we first uncovered reduction in PITRM1 expression in AD‐affected cortex of AD mice at 19–24 months of age. Increasing neuronal PITRM1 activity/expression re‐established mitochondrial respiration, suppressed reactive oxygen species, improved synaptic function, and reduced loss of synapses even at advanced ages (up to 19–24 months). Notably, loss of PITRM1 proteolytic activity resulted in Aβ accumulation and failure to rescue mitochondrial and synaptic function, suggesting that PITRM1 activity is required for the degradation and clearance of mitochondrial Aβ and Aβ deposition. These data indicate that augmenting PITRM1 function results in persistent life‐long protection against Aβ toxicity in an AD mouse model. Therefore, augmenting PITRM1 function may enhance Aβ clearance in mitochondria, thereby maintaining mitochondrial integrity and ultimately slowing the progression of AD.  相似文献   

7.
8.
Transgenic mouse models are powerful tools in exploring the mechanisms of AD. Most current transgenic models of AD mimic the memory impairment and the main pathologic features, among which the formation of beta-amyloid (Aβ) plaques is considered a dominant pathologic event. Recently, Aβ oligomers have been identified as more neurotoxic than Aβ plaques. However, no ideal transgenic mouse model directly support Aβ oligomers as a neurotoxic species due to the puzzling effects of amyloid plaques in the more widely-used models. Here, we constructed a single-mutant transgenic (Tg) model harboring the PS1V97L mutation and used Non-Tg littermates as a control group. Employing the Morris water maze, electrophysiology, immunohistochemistry, biochemistry, and electron microscopy, we investigated behavioral changes and pathology progression in our single-mutant transgenic model. We discovered the pathological alteration of intraneuronal accumulation of Aβ oligomers without Aβ plaques in the PS1V97L-Tg mouse model, which might be the result of PS1 gene mutation. Following Aβ oligomers, we detected synaptic alteration, tau hyperphosphorylation and glial activation. This model supports an initial role for Aβ oligomers in the onset of AD and suggests that Aβ plaques may not be the only prerequisite. This model provides a useful tool for studying the role of Aβ oligomers in AD pathogenesis.  相似文献   

9.
Accumulation of beta-amyloid (Aβ) is an important pathological event in Alzheimer’s disease (AD). It is now well known that vaccination against fibrillar Aβ prevents amyloid accumulation and preserves cognitive function in transgenic mouse models. To study the effect of vaccination against generic oligomer epitopes, Aβ oligomers, islet amyloid polypeptide oligomers, random peptide oligomer (3A), and Aβ fibrils were used to vaccinate 3xTg-AD, which develop a progressive accumulation of plaques and cognitive impairment. Subcutaneous administration of these antigens markedly reduced total plaque load (Aβ burden) and improved cognitive function in the 3xTg-AD mouse brains as compared to controls. We demonstrated that vaccination with this nonhuman amyloid oligomer generated high titers of specifically antibodies recognizing Aβ oligomers, which in turn inhibited accumulation of Aβ pathology in mice. In addition to amyloid plaques, another hallmark of AD is tau pathology. It was found that there was a significant decline in the level of hyper-phosphorylated tau following vaccination. We have previously shown that immunization with 3A peptide improves cognitive function and clears amyloid plaques in Tg2576 mice, which provides a novel strategy of AD therapy. Here, we have shown that vaccination with 3A peptide in 3xTg-AD mice not only clears amyloid plaques but also extensively clears abnormal tau in brain.  相似文献   

10.
In Alzheimer’s disease (AD), hallmark β-amyloid deposits are characterized by the presence of activated microglia around them. Despite an extensive characterization of the relation of amyloid plaques with microglia, little is known about the initiation of this interaction. In this study, the detailed investigation of very small plaques in brain slices in AD transgenic mice of the line APP-PS1(dE9) revealed different levels of microglia recruitment. Analysing plaques with a diameter of up to 10 μm we find that only the half are associated with clear morphologically activated microglia. Utilizing in vivo imaging of new appearing amyloid plaques in double-transgenic APP-PS1(dE9)xCX3CR1+/- mice further characterized the dynamic of morphological microglia activation. We observed no correlation of morphological microglia activation and plaque volume or plaque lifetime. Taken together, our results demonstrate a very prominent variation in size as well as in lifetime of new plaques relative to the state of microglia reaction. These observations might question the existing view that amyloid deposits by themselves are sufficient to attract and activate microglia in vivo.  相似文献   

11.
The aspartyl protease beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates processing of amyloid precursor protein (APP) into amyloid beta (Abeta) peptide, the major component of Alzheimer disease (AD) plaques. To determine the role that BACE1 plays in the development of Abeta-driven AD-like pathology, we have crossed PDAPP mice, a transgenic mouse model of AD overexpressing human mutated APP, onto mice with either a homozygous or heterozygous BACE1 gene knockout. Analysis of PDAPP/BACE(-/-) mice demonstrated that BACE1 is absolutely required for both Abeta generation and the development of age-associated plaque pathology. Furthermore, synaptic deficits, a neurodegenerative pathology characteristic of AD, were also reversed in the bigenic mice. To determine the extent of BACE1 reduction required to significantly inhibit pathology, PDAPP mice having a heterozygous BACE1 gene knock-out were evaluated for Abeta generation and for the development of pathology. Although the 50% reduction in BACE1 enzyme levels caused only a 12% decrease in Abeta levels in young mice, it nonetheless resulted in a dramatic reduction in Abeta plaques, neuritic burden, and synaptic deficits in older mice. Quantitative analyses indicate that brain Abeta levels in young APP transgenic mice are not the sole determinant for the changes in plaque pathology mediated by reduced BACE1. These observations demonstrate that partial reductions of BACE1 enzyme activity and concomitant Abeta levels lead to dramatic inhibition of Abeta-driven AD-like pathology, making BACE1 an excellent target for therapeutic intervention in AD.  相似文献   

12.
13.
14.
We previously demonstrated that ibrutinib modulates LPS‐induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer''s disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aβ plaque levels by promoting the non‐amyloidogenic pathway of APP cleavage, decreased Aβ‐induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin‐dependent kinase‐5 (p‐CDK5). Importantly, tau‐mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long‐term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short‐ and long‐term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3‐kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD‐associated pathology and cognitive function and may be a potential therapy for AD.  相似文献   

15.
Fibrillar amyloid β (fAβ) peptide is the major component of Aβ plaques in the brains of Alzheimer's disease (AD) patients. Inflammatory mediators have previously been proposed to be drivers of Aβ pathology in AD patients by increasing amyloidogenic processing of APP and promoting Aβ accumulation, but recent data have shown that expression of various inflammatory cytokines attenuates Aβ pathology in mouse models. In an effort to further study the role of different inflammatory cytokines on Aβ pathology in vivo, we explored the effect of murine Tumor Necrosis Factor α (mTNFα) in regulating Aβ accumulation. Recombinant adeno-associated virus serotype 1 (AAV2/1) mediated expression of mTNFα in the hippocampus of 4 month old APP transgenic TgCRND8 mice resulted in significant reduction in hippocampal Aβ burden. No changes in APP levels or APP processing were observed in either mTNFα expressing APP transgenic mice or in non-transgenic littermates. Analysis of Aβ plaque burden in mTNFα expressing mice showed that even after substantial reduction compared to EGFP expressing age-matched controls, the Aβ plaque burden levels of the former do not decrease to the levels of 4 month old unmanipulated mice. Taken together, our data suggests that proinflammatory cytokine expression induced robust glial activation can attenuate plaque deposition. Whether such an enhanced microglial response actually clears preexisting deposits without causing bystander neurotoxicity remains an open question.  相似文献   

16.
Extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles constitute the major neuropathological hallmarks of Alzheimer’s disease (AD). It is now apparent that parenchymal Aβ plaque deposition precedes behavioral signs of disease by several years. The development of agents that can target these plaques may be useful as diagnostic or therapeutic tools. In this study, we synthesized an Aβ-targeted lipid conjugate, incorporated it in stealth liposomal nanoparticles and tested their ability to bind amyloid plaque deposits in an AD mouse model. The results show that the particles maintain binding profiles to synthetic Aβ aggregates comparable to the free ligand, and selectively bind Aβ plaque deposits in brain tissue sections of an AD mouse model (APP/PSEN1 transgenic mice) with high efficiency. When administered intravenously, these long circulating nanoparticles appear to cross the blood-brain barrier and bind to Aβ plaque deposits, labeling parenchymal amyloid deposits and vascular amyloid characteristic of cerebral amyloid angiopathy.  相似文献   

17.
Alzheimer''s disease (AD) is the most common neurodegenerative disorder leading to dementia. Neuritic plaque formation is one of the pathological hallmarks of Alzheimer''s disease. The central component of neuritic plaques is a small filamentous protein called amyloid β protein (Aβ)1, which is derived from sequential proteolytic cleavage of the beta-amyloid precursor protein (APP) by β-secretase and γ-secretase. The amyloid hypothesis entails that Aγ-containing plaques as the underlying toxic mechanism in AD pathology2. The postmortem analysis of the presence of neuritic plaque confirms the diagnosis of AD. To further our understanding of Aγ neurobiology in AD pathogenesis, various mouse strains expressing AD-related mutations in the human APP genes were generated. Depending on the severity of the disease, these mice will develop neuritic plaques at different ages. These mice serve as invaluable tools for studying the pathogenesis and drug development that could affect the APP processing pathway and neuritic plaque formation. In this protocol, we employ an immunohistochemical method for specific detection of neuritic plaques in AD model mice. We will specifically discuss the preparation from extracting the half brain, paraformaldehyde fixation, cryosectioning, and two methods to detect neurotic plaques in AD transgenic mice: immunohistochemical detection using the ABC and DAB method and fluorescent detection using thiofalvin S staining method.  相似文献   

18.
Objective: The purpose of this study was to investigate the effects and pharmacological mechanisms of icariin, which is the main component in the traditional Chinese herb Epimedium, on β-amyloid (Aβ) production in an amyloid precursor protein (APP) transgenic (Tg) mouse model of Alzheimer''s disease (AD).Methods: APPV717I Tg mice were randomly divided into a model group and icariin-treated (30 and 100 μmol/kg per day) groups. Learning-memory abilities were determined by Morris water maze and object recognition tests. Aβ contents were measured by enzyme-linked immunosorbent assays and immunohistochemistry. Amyloid plaques were detected by Congo red staining and Bielschowsky silver staining. The levels of expression of APP and β-site APP-cleaving enzyme 1 (BACE-1) were measured by western blotting and immunohistochemistry.Results: Ten-month-old Tg mice showed obvious learning-memory impairments, and significant increases in Aβ contents, amyloid plaques, and APP and BACE-1 levels in the hippocampus. The intragastric administration of icariin to Tg mice for 6 months (from 4 to 10 months of age) improved the learning-memory abilities and significantly decreased the Aβ contents, amyloid plaques, and APP and BACE-1 levels in the hippocampus.Conclusion: Icariin reduced the Aβ burden and amyloid plaque deposition in the hippocampus of APP transgenic mice by decreasing the APP and BACE-1 levels. These novel findings suggest that icariin may be a promising treatment in patients with AD.  相似文献   

19.
ObjectivesIn this study, we administered immunity‐and‐matrix regulatory cells (IMRCs) via tail vein (IV) and intracerebroventricular (ICV) injection to 3‐month‐old 5×FAD transgenic mice to assess the effects of IMRC transplantation on the behaviour and pathology of early‐stage Alzheimer''s disease (AD).Materials and methodsClinical‐grade human embryonic stem cell (hESC)‐derived IMRCs were produced under good manufacturing practice (GMP) conditions. Three‐month‐old 5×FAD mice were administered IMRCs via IV and ICV injection. After 3 months, the mice were subjected to behavioural tests and electrophysiological analysis to evaluate their cognitive function, memory ability and synaptic plasticity. The effect of IMRCs on amyloid‐beta (Aβ)‐related pathology was detected by thioflavin‐S staining and Western blot. Quantitative real‐time PCR, ELISA and immunostaining were used to confirm that IMRCs inhibit neuroinflammation. RNA‐seq analysis was performed to measure changes in gene expression and perform a pathway analysis in response to IMRC treatment.ResultsIMRC administration via tail vein injection significantly ameliorated cognitive deficits in early‐stage AD (5×FAD) mice. However, no significant change was observed in the characteristic pathology of AD in the ICV group. Plaque analysis revealed that IMRCs did not influence either plaque deposition or BACE1 expression. In addition, IMRCs inhibited inflammatory responses and reduced microglial activation in vivo.ConclusionsWe have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits.  相似文献   

20.
Increased expression and altered processing of the amyloid precursor protein (APP) and generation of beta-amyloid peptides is important in the pathogenesis of amyloid plaques in Alzheimer's disease (AD). Transgenic Tg2576 mice overexpressing the Swedish mutation of human APP exhibit beta-amyloid deposition in the neocortex and limbic areas, accompanied by gliosis and dystrophic neurites. However, murine plaques appear to be less cross-linked and the mice show a lower degree of inflammation and neurodegeneration than AD patients. 'Advanced glycation endproducts (AGEs)', formed by reaction of proteins with reactive sugars or dicarbonyl compounds, are able to cross-link proteins and to activate glial cells, and are thus contributing to plaque stability and plaque-induced inflammation in AD. In this study, we analyze the tissue distribution of AGEs and the pro-inflammatory cytokines IL-1beta and TNF-alpha in 24-month-old Tg2576 mice, and compare the AGE distribution in these mice with a younger age group (13 months old) and a typical Alzheimer's disease patient. Around 70% of the amyloid plaque cores in the 24-month-old mice are devoid of AGEs, which might explain their solubility in physiological buffers. Plaque associated glia, which express IL-1beta and TNF-alpha, contain a significant amount of AGEs, suggesting that plaques, i.e. Abeta as its major component, can induce intracellular AGE formation and the expression of the cytokines on its own. In the 13-month-old transgenic mice, AGEs staining can neither be detected in plaques nor in glial cells. In contrast, AGEs are present in high amounts in both plaques and glia in the human AD patient. The data obtained in this show interesting differences between the transgenic mouse model and AD patients, which should be considered using the transgenic approach to test therapeutical strategies to eliminate plaques or to attenuate the inflammatory response in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号