首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzo(α)pyrene treatment resulted in stimulation of only cytochrome P-450K and benzo(α)pyrene hydroxylase activity in rat kidney cortex microsomes. Spectral properties of cytochrome P-450K showed that the 452 nm peak of the reduced hemoprotein CO-complex was not shifted in benzo(α)pyrene-treated rats. The off-balance absolute spectrum of oxidized cytochrome P-450K displayed an absorption maximum at 414 nm, another band at 385 nm, and a distinct shoulder at 398 nm. Addition of benzo(α)pyrene to kidney microsomes resulted in a type I spectral change seen only in benzo(α)pyrene-treated rats. The addition of ethyl isocyanide to dithionitetreated microsomes from control rats gave rise to two Soret peaks, 432 nm and 458 nm. These peaks were proportionately increased in benzo(α)pyrene-treated rats; furthermore, the 458 nm peak was not shifted. The relative heights of the two peaks were in a pH-dependent equilibrium similar to that observed in liver; however, in contrast to liver, the pH, at which the ratio of the peak heights equals one, was the same for both benzo(α)pyrene-treated and control microsomes. These data indicate that the newly induced hemoprotein has spectral properties markedly different from those of the benzo(α)pyrene-induced liver hemoprotein, yet similar to those of the “noninduced” kidney hemoprotein. α-Naphthoflavone, an inhibitor of the aryl hydroxylase system, induced a type I spectral change, suggesting the mode of action of α-naphthoflavone to be its interaction with cytochrome P-450K probably at or near the active site. Finally, the rate of reduction of cytochrome P-450K was not affected by the presence of benzo(α)pyrene.  相似文献   

2.
The role of four forms of cytochrome P-450 from rabbit liver in the metabolic activation of two suspected carcinogens, 2-aminoanthracene and benz[α]pyrene, was investigated with a S. typhimurium tester strain, TA 98. Each of the forms, 2,3,4 and 6 was reconstituted with NADPH-cytochrome P-450 reductase and lipid, and assay conditions were established such that the cytochrome P-450 concentration was rate-limiting. Under these conditions, cytochrome P-450 form 4, but not the other forms, converted 2-aminoanthracene into a potent mutagen. In contrast, form 6 was the only form which metabolized benz[α]pyrene to a mutagen. These results indicate that specific cytochrome P-450 forms preferentially activate particular mutagens.  相似文献   

3.
Cytochrome P-448, a type of cytochrome P-450, from brewer's yeast (Saccharomyces cerevisiae) grown under conditions of glucose repression was isolated and purified. Triton X-100 in very low concentration proved to be very effective in stabilizing P-448 in the microsomal fraction and later prevented its conversion to cytochrome P-420 through solubilization with various ionic and nonionic detergents. Highest yields were obtained with 1% sodium cholate, in the presence of 0.1% Triton X-100 and reduced glutathione. A novel combination of hydrophobic adsorption and other chromatographic techniques was used for the purification of cytochrome P-448. These involve the use of amino octyl-Sepharose 4B, instead of the low-yielding aminohexyl derivative, followed by the fast-running hydroxyapatite-cellulose column. Finally, the use of DEAE-Sephacel was found to increase greatly the purity of the cytochrome P-448 obtained. The molecular weight of this preparation was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr, 55,500). Using the known molar extinction coefficient of the carbon monoxide-difference spectrum the estimate of degree of purity of cytochrome P-448 obtained by this purification procedure was between 88 and 97%. Electrophoresis also showed that this preparation was completely homogeneous and assays showed that it was also completely free of cytochrome bs, cytochrome c reductase and cytochrome P-420. Purified cytochrome P-448 reconstituted with cytochrome P-450 (cytochrome c) reductase, isolated from yeast, showed 10-fold higher aryl hydrocarbon hydroxylase activity with benzo[a]pyrene as a substrate than the corresponding microsomal fraction enzyme. Kinetics of benzo[a]pyrene hydroxylation were determined: Km (33 μm) was comparable with that reported for purified hepatic cytochrome P-448. The number of binding sites of microsomal and purified cytochromes P-450 (from liver of phenobarbital-induced rats) and yeast cytochrome P-448 with benzo[a]pyrene has been determined using and equilibrium gel filtration method. There is one binding site in each case (contrast with six sites for microsomal enzymes). The Scatchard plot gives number of binding sites, apparent association constants (K), and the equivalent dissociation constants (Ks). Comparison is made with spectral dissociation constants for these enzymes and benzo[a]pyrene. Thus the proportion bound, dissociation constant (Ks), and stoichiometry of rat liver (phenobarbital induced) and yeast cytochrome P-448 with benzo[a]pyrene were compared with corresponding values for microsomal fractions of both systems. Purified enzymes had higher Ks values in both cases, and the proportion of enzyme that bound benzo[a]pyrene was high (53%) for liver and this value is 100% for purified enzyme from yeast, which is the same as the value obtained for the microsomal enzyme from yeast.  相似文献   

4.
A reconstituted mixed-function oxidase system, containing the major β-naphthoflavone-induced isozyme of rat liver cytochrome P-450 bound benzo[a]pyrene covalently in the presence of NADPH. NADPH-cytochrome P-450 reductase was required for binding and a maximum rate of adduct formation was obtained at 8 units of reductase per nmol cytochrome P-450. Phosphatidylcholine inhibited this reaction. Benzo[a]pyrene was bound to the cytochrome, but not to the reductase, as shown by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Approximately 6 molecules of benzo[a]pyrene bound to each molecule cytochrome P-450 during prolonged incubations. No binding occurred when the β-naphthoflavone-induced isozyme of cytochrome P-450 was replaced by the major isozyme induced by phenobarbital, but both cytochromes incorporated benzo[a]pyrene to approximately the same extent when they were incubated together in the presence of the reductase and NADPH. Metabolically activated benzo[a]pyrene also bound covalently to purified epoxide hydrodrolase, when this enzyme was added to the reconstituted mixed-function oxidase system.  相似文献   

5.
  • 1.1. Effects of antioxidants (butylated hydroxytoluene and nor-dihydroguaiaretic acid), vitamin K-related quinones (vitamin K1 and coenzyme Q10) and inorganic copper (CuSO4), in concentrations inhibiting NADPH: cytochrome P -450 reductase, were re-examined on benzo(a)pyrene metabolism in mouse liver uninduced microsomes.
  • 2.2. It was found that all these compounds decrease production of the two-electron oxygenation products of benzo(a)pyrene (monophenoles, diols) and the amounts of glucuronides in a manner parallel to their inhibitory potency against NADPH: cytochrome P-450 reductase.
  • 3.3. No correlation was found between amounts of one-electron oxidation products of benzo(a)pyrene and inhibition of NADPH: cytochrome P-450 reductase.
  • 4.4. Without added UDPGA the compounds studied decreased protein associated benzo(a)pyrene metabolites in parallel to the decreased overall metabolism of this polyaromatic hydrocarbon.
  • 5.5. The mode of action of the studied compounds is discussed.
  相似文献   

6.
Benzo(a)pyrene [B(a)P] treatment of gilthead seabream, 25 mg/kg, i.p. for 5 consecutive days, did not cause any significant changes in ethylmorphine N-demethylase and aniline 4-hydroxylase activities of liver microsomes. The same treatment did not alter the liver microsomal cytochrome b5 content, NADH-cytochrome b5 reductase and NADPH-cytochrome P450 reductase activities. However, benzo(a)pyrene treatment caused a 2–3-fold increase in 7-ethoxyresorufin O-deethylase (7-EROD) activity of gilthead seabream liver microsomes. Although, upon treatment, total cytochrome P450 content of liver microsomes increased about 1.7-fold in 1990 fall, no such increase was observed in spring 1991. However, a new cytochrome P450 with an apparent Mr of 58,000 was observed on SDS-PAGE of liver microsomes obtained from benzo(a)pyrene treated gilthead seabream. Besides, in vitro addition of 0.2 × 10−6 M benzo(a)pyrene to the incubation mixture inhibited 7-ethoxyresorufin O-deethylase activity by 93%. Gilthead seabream liver microsomal 7-ethoxyresorufin O-deethylase activity was characterized with respect to substrate concentration, amount of enzyme, type of buffer used, incubation period and temperature.  相似文献   

7.
A potent inhibitor of microsomal mixed-function oxidation reactions in insects had previously been isolated and partially purified from the gut contents of Prodenia eridania and shown to be associated with proteinase activity. Incubation of rat liver microsomal fraction with low concentrations of this inhibitor led to solubilization of NADPH–cytochrome c reductase, which was paralleled by the inactivation of reduction of cytochrome P-450 by NADPH and by the inhibition of NADPH-linked benzo[3,4]pyrene hydroxylation and aminopyrine demethylation. There was little or no effect on cytochromes b5 and P-450, nor was the capacity of the latter catalyst to combine with exogenous substrates decreased. Contrary to the findings with NADPH, preincubation of microsomal fraction with the inhibitor did not cause a significant decrease in the rate of cytochrome P-450 reduction by NADH, supporting the assumption that different catalysts are involved in the electron transfer from NADH and NADPH to cytochrome P-450. The findings indicate the importance of taking the possible presence of endogenous inhibitors into consideration when evaluating low or absent mixed-function oxidation activities found in insect systems in vitro.  相似文献   

8.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

9.
Cytochromes P-450 with high activity toward benzo[a]pyrene were isolated from liver microsomes of rats treated with either β-naphthoflavone or 3-methylcholanthrene and examined for similarity using several physical and catalytic criteria. The β-naphthofla-vone-inducible cytochrome P-446 and the 3-methylcholanthrene-inducible cytochrome P-448 have the same subunit molecular weight (56,000 ± 1000) and electrophoretic mobility. Antibodies prepared to either form cross-react with each form without spurring in Ouchterlony double-diffusion experiments suggesting immunochemical identity. After proteolytic digestion with Staphylococcus aureus SV-8 protease and electrophoresis, both Cytochromes P-450 show the presence of the same bands. Both cytochromes have the same absorption maximum (446.5 ± 0.5 nm) in the CO-reduced absolute spectrum. The catalytic activity toward benzo[a]pyrene of cytochrome P-446 is somewhat greater than that of cytochrome P-448. Thus, all the physical evidence suggests identity of the two cytochromes. The significance of the difference in catalytic activity remains to be defined.  相似文献   

10.
The roles of rabbit liver cytochrome b5, epoxide hydrase and various forms of cytochrome P-450 in the NADPH-dependent metabolism of benzo(a)pyrene were examined. After incorporation of the purified enzymes into phospholipid vesicles, using the cholate gel filtration technique, the various types of cytochrome P-450 did exhibit different stereospecificities in the oxygenation of the substrate. Cytochrome P-450LM2 was found to efficiently convert benzo(a)pyrene in the presence of epoxide hydrase to 4,5-dihydroxy-4,5-dihydrobenzo(a)pyrene whereas cytochrome P-450LM4 primarily participated in the formation of 9,10-dihydroxy-9,10-dihydrobenzo(a)pyrene. By contrast, benzo(a)pyrene was not metabolized by cytochrome P-450LM3. Cytochrome b5 enhanced cytochrome P-450LM2-catalyzed oxygenations 5-fold, whereas cytochrome P-450LM4-dependent oxygenations proceeded at a 3 times higher rate when cytochrome b5 was present in the membrane.  相似文献   

11.
The hydroxylation of N- and O-methyl drugs and polycyclic hydrocarbons has been demonstrated in microsomes prepared from colon mucosal cells. The hydroxylation of the drugs benzphetamine, ethylmorphine, p-nitroanisole, and p-nitrophenetole by colon microsomes is inducible two- to fourfold by pretreatment with phenobarbital/hydrocortisone. Colon microsomal benzo[α]pyrene hydroxylation is inducible 35-fold by pretreatment with β-naphthoflavone. Phenobarbital/hydrocortisone pretreatment also induces a fourfold increase in the specific content of colon microsomal cytochrome P-450, while β-naphthoflavone pretreatment causes a shift in the reduced CO difference spectrum peak to 448 nm and an eightfold increase in the specific content of this cytochrome. SKF 525-A inhibits the hydroxylation of the drug benzphetamine by colon microsomes or liver microsomes by 77% at a concentration of 2.0 mm. 7,8-Benzoflavone, on the other hand, inhibits the hydroxylation of the polycyclic hydrocarbon benzo[α]pyrene by colon microsomes by 76% and by liver microsomes by 44% at a concentration of 10 μm. Carbon monoxide, an inhibitor of oxygen interaction with cytochromes P-450 and P-448, inhibits benzphetamine hydroxylation and benzpyrene hydroxylation by colon microsomes 30 and 51%, respectively, at an oxygen to carbon monoxide ratio of 1:10. The Km values of colon microsomal cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, dichloroindophenol, and ferricyanide (10–77 μm) are in agreement with those for purified rat liver cytochrome P-450 reductase. These data support the conclusions that hydroxylation of drugs and polycyclic hydrocarbons is catalyzed by colon mucosal microsomes and that the hydroxylation activity is attributable to a cytochrome P-450-dependent drug metabolism system similar to that found in liver microsomes.  相似文献   

12.
The destruction of cytochrome P-450 by allylisopropylacetamide (2-isopropyl-4-pentenamide) in microsomes from phenobarbital-pretreated rats has been shown to require oxygen, to be inhibited by NADP through inhibition of cytochrome P-450 reductase, and to be slightly stimulated by NADH. Glutathione (1 mm) does not inhibit destruction, but methyl 4,5-epoxy-2-isopropylpentanoate (5 mm), an analog of the epoxide of allylisopropylacetamide, does. The inactivation of cytochrome P-450 is both time dependent and saturable, although no more than approximately 40% of the microsomal enzyme appears to be normally destructible. However, mechanical perturbation of the microsomal suspension by rehomogenization initiates renewed destruction. Kinetic analysis shows that the destructive process is pseudo-first-order, with an apparent inactivation rate constant of 1.4 × 10?3 s?1 and an apparent Km of 1.14 mm. Approximately 230 molecules of substrate are turned over for each destructive event. These results, in conjunction with previously reported data, clearly and unambiguously establish that inactivation of cytochrome P-450 by allylisopropylacetamide is a suicidal process.  相似文献   

13.
Liver microsomes and reconstituted cytochrome P-450 systems purified from phenobarbital or 3-methylcholanthrene pre-treated rats metabolize cyclopenta(cd)pyrene at its K-region to trans-9,10-dihydroxy-9,10-dihydrocyclopenta(cd)pyrene. The rate of formation of the K-region product is from 5% to 25% that of trans-3,4-dihydroxy-3,4-dihydro-cyclopenta(cd)pyrene. The preference of microsomes and purified cytochromes P-450 for oxygenating cyclopenta(cd)pyrene at the ethylenic C(3)–C(4) position is explainable in part by the fact that the C(4) position has the greatest electron density in the highest occupied molecular orbital.  相似文献   

14.
Ethanol consumption decreased the specific content of microsomal cytochrome b5 in both chow-and liquid diet-fed hamsters while cytochrome P450 levels were unchanged in chow-fed animals and increased in liquid diet-fed animals. Microsomes from animals receiving ethanol in their drinking water exhibited decreased rates of microsomal aryl hydrocarbon hydroxylase activity and postmitochondrial supernatant mediated mutagenicity of benzo(a)pyrene. In contrast, microsomes from hamsters receiving ethanol in liquid diets showed no changes in either of these two activities. When the observed rates of 7,8 and 9,10 diol formation per nmole P450 for chow-fed animals are plotted vs. the b5/P450 ratio a positive correlation was observed suggesting that cytochrome b5 participates directly in the microsomal metabolism of benzo(a)pyrene.  相似文献   

15.
Both the rat kidney cortex aryl hydrocarbon hydroxylase activity and cytochrome P-450K are induced by benzo(α)pyrene treatment. Following a single injection of benzo(α)pyrene, maximal hydroxylase activity and cytochrome P-450K content occur at 24 hr, returning to control levels within 72–96 hr. Induction of both the enzyme activity and hemoprotein is inhibited by cycloheximide. The enzyme system is localized in the microsomal fraction, has an absolute requirement for NADPH and molecular oxygen, and a pH optimum at 7.4; the induced activity is linear with microsomal protein concentration up to 0.8 mg and with time up to 20 min. Both the hydroxylase activity and cytochrome P-450K follow the same pattern of inactivation with increasing temperature. The apparent Km for the induced hydroxylase was 7.7 μm and V was increased fourfold above control value. In the presence of laurate, a substrate for the kidney microsomal cytochrome P-450K-dependent monooxygenase system, the amount of inhibition of hydroxylase activity corresponded to the level of activity present in untreated kidney cortex microsomes. α-Naphthoflavone (10?5m), a type I inducer (36) produced a greater inhibitory effect on the induced hydroxylase activity than on the control (55% vs 20%). The presence of cytochrome c or carbon monoxide markedly decreased hydroxylase activity. This evidence in addition to aforementioned characteristics of the enzyme suggests a cytochrome P-450K-dependent aryl hydroxylase activity which differs from that present in the control rat.  相似文献   

16.
Hepatic microsomal cytochrome P-450 from the untreated coastal marine fish scup, Stenotomus chrysops, was solubilized and resolved into five fractions by ion-exchange chromatography. The major fraction, cytochrome P-450E (Mr = 54,300), was further purified to a specific content of 11.7 nmol heme/mg protein and contained a chromophore absorbing at 447 nm in the CO-ligated, reduced difference spectrum. NH2-terminal sequence analysis of cytochrome P-450E by Edman degradation revealed no homology with any known cytochrome P-450 isozyme in the first nine residues. S. chrysops liver NADPH-cytochrome P-450 reductase, purified 225-fold (Mr = 82,600), had a specific activity of 45–60 U/mg with cytochrome c, contained both FAD and FMN, and was isolated as the one-electron reduced semiquinone.Purified cytochrome P-450E metabolized several substrates including 7-ethoxycoumarin, acetanilide, and benzo[a]pyrene when reconstituted with lipid and hepatic NADPH-cytochrome P-450 reductase from either S. chrysops or rat. The purified, reconstituted monooxygenase system was sensitive to inhibition by 100 μM 7,8-benzoflavone, and analysis of products in reconstitutions with purified rat epoxide hydrolase indicated a preference for oxidation on the benzo-ring of benzo[a]pyrene consistent with the primary features of benzo[a]pyrene metabolism in microsomes. Cytochrome P-450E is identical to the major microsomal aromatic hydrocarbon-inducible cytochrome P-450 by the criteria of molecular weight, optical properties, and catalytic profile. It is suggested that substantial quantities of this aromatic hydrocarbon-inducible isozyme exist in the hepatic microsomes of some untreated S. chrysops. The characterization of this aryl hydrocarbon hydroxylase extends our understanding of the metabolism patterns observed in hepatic microsomes isolated from untreated fish.  相似文献   

17.
Conversion of benzo[a]pyrene (BP) to BP 7,8-dihydrodiol 9,10-oxides (DE) (measured as 7,10/8,9-tetrols) by untreated (UT) rat liver microsomes is over 10 times slower than following 3-methylcholanthrene (MC) induction. Time courses have been subjected to a kinetic analysis analogous to that previously reported for metabolism by MC-induced microsomes (J. Biol. Chem., 259 (1984) 13770–13776). Competition between BP and 7,8-dihydrodiol for P-450 is the major determinant of the rate of DE formation. Glucuronidation of quinones and phenols only increases the isolated BP metabolites including DE by 40%. This indicates far less inhibition by these products than for metabolism in MC-microsomes (4–6-fold). Thus stimulation may result from a decreased quinone-mediated oxidation of metabolites. In the presence of DNA, UT-microsomes metabolize BP to approximately equal amounts of 9-phenol-4,5-oxide (9-PO) and DE/DNA adducts. Addition of uridine diphosphoglucuronic acid (UDPGA) fails to enhance modification of DNA by DE, but formation of the 9-PO adduct is reduced as a result of lower free 9-phenol levels. The kinetic characteristics of BP metabolism by UT-microsomes are highly sensitive to the presence of very small but variable amounts (2–25 pmol/mg) of the very active cytochrome P-450c, which is the predominant form in MC-microsomes. The major effect of elevated levels of P-450c is an 8-fold increase in DE formation at low concentrations of BP due to a lowering of Km (7.9–2.6 μM) and an increase in the regioselectivity for DE formation from 7,8-dihydrodiol (5–15% of total BP metabolites). The formation of DE was directly correlated with the content of P-450c (r = 0.94). The presence of increased levels of P-450c in UT-microsomes is probably due to previous exposure of the animals to environmental inducers and is minimized by controlled housing and feeding.  相似文献   

18.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

19.
The biliary excretion of the carcinogen 6-hydroxy-methylbenzo[a]pyrene was investigated in rats after i.p. administration. Mutagenicity of the parent compound and its biliary metabolites was tested in Ames Salmonella/microsome mutagenicity assay. Approximately 40% of the dose administered (0.25-0.5 mg/kg) to the rats was excreted in the bile within 6 h. 6-Hydroxymethylbenzo[a]pyrene was excreted primarily as water-soluble metabolites, including glucuronide and sulfate conjugates. Negligible quantities of unchanged 6-hydroxymethylbenzo[a]pyrene were excreted in the bile. In the presence of Aroclor-induced S9, 6-hydroxymethylbenzo[a]pyrene was a potent mutagen. The mutagenicity of bile from rats treated with 6-hydroxymethylbenzo[a]pyrene was variable in the absence of an activation system. However, the same bile samples were mutagenic in the presence of beta-glucuronidase and/or S9. These results indicate that biliary metabolites of 6-hydroxymethylbenzo[a]pyrene can be metabolically activated to mutagenic species.  相似文献   

20.
Hypolipidaemic drugs induce peroxisomal proliferation in the liver and many induce the formation of the hepatic endoplasmic reticulum in general and the formation of cytochrome P-450 in particular. We have induced the formation of rat liver microsomal cytochrome P-450 by the administration of the hypolipidaemic drug clofibrate, isolated the endoplasmic reticulum, solubilized the cytochrome P-450 from these membranes and subdivided the cytochrome P-450 into four fractions by the use of hydrophobic, anionic, cationic and adsorption chromatography. One of these fractions (cytochrome P-450 fraction 1) was highly purified to a specific content of 17nmol of cytochrome P-450/mg of protein and the protein was active in a reconstituted enzyme system towards the 12- and 11-hydroxylation of the fatty acid, dodecanoic (lauric) acid, with preferential activity towards the 12-hydroxy metabolite. This reconstituted activity was absolutely dependent on NADPH, NADPH-cytochrome P-450 reductase and cytochrome P-450, indicating the role of the mixed-function oxidase system in the metabolism of lauric acid. Another fraction of the haemoprotein (cytochrome P-450 fraction 2) preferentially formed 11-hydroxylauric acid, whereas a third fraction (cytochrome P-450 fraction 3) exhibited only trace laurate oxidase activity and was similar to the phenobarbitone form of the haemoprotein in that these last two cytochromes rapidly turned-over the drug benzphetamine. The molecular weights and spectral properties of these cytochrome P-450 fractions are reported, along with the phenobarbitone-induced form of the enzyme and the nature of the cytochrome(s) induced by clofibrate pretreatment are discussed in the terms of possible haemoprotein heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号