首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.  相似文献   

2.
Human immunodeficiency virus (HIV) can be transmitted through infected seminal fluid or vaginal or rectal secretions during heterosexual or homosexual intercourse. To prevent mucosal transmission and spread to the regional lymph nodes, an effective vaccine may need to stimulate immune responses at the genitourinary mucosa. In this study, we have developed a mucosal model of genital immunization in male rhesus macaques, by topical urethral immunization with recombinant simian immunodeficiency virus p27gag, expressed as a hybrid Ty virus-like particle (Ty-VLP) and covalently linked to cholera toxin B subunit. This treatment was augmented by oral immunization with the same vaccine but with added killed cholera vibrios. Polymeric secretory immunoglobulin A (sIgA) and IgG antibodies to p27 were induced in urethral secretions, urine, and seminal fluid. This raises the possibility that the antibodies may function as a primary mucosal defense barrier against SIV (HIV) infection. The regional lymph nodes which constitute the genital-associated lymphoid tissue contained p27-specific CD4+ proliferative and helper T cells for antibody synthesis by B cells, which may function as a secondary immune barrier to infection. Blood and splenic lymphocytes also showed p27-sensitized CD4+ T cells and B cells in addition to serum IgG and IgA p27-specific antibodies; this constitutes a third level of immunity against dissemination of the virus. A comparison of genito-oral with recto-oral and intramuscular routes of immunization suggests that only genito-oral immunization elicits specific sIgA and IgG antibodies in the urine, urethra, and seminal fluid. Both genito-oral and recto-oral immunizations induced T-cell and B-cell immune responses in regional lymph nodes, with preferential IgA antibody synthesis. The mucosal route of immunization may prevent not only virus transmission through the genital mucosa but also dissemination and latency of the virus in the draining lymph nodes.  相似文献   

3.
Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.  相似文献   

4.
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.  相似文献   

5.
Preclinical studies have shown that the induction of secretory IgA (sIgA) in mucosa and neutralizing antibodies (NAbs) in sera is essential for designing vaccines that can effectively block the transmission of HIV-1. We previously showed that a vaccine consisting of bacterium-like particles (BLPs) displaying Protan-gp120AE-MTQ (PAM) could induce mucosal immune responses through intranasal (IN) immunization in mice and NAbs through intramuscular (IM) immunization in guinea pigs. Here, we evaluated the ability of this vaccine BLP-PAM to elicit HIV-1-specific mucosal and systemic immune responses through IN and IM immunization combination strategies in rhesus macaques. First, the morphology, antigenicity and epitope accessibility of the vaccine were analysed by transmission electron microscopy, bio-layer interferometry and ELISA. In BLP-PAM-immunized macaques, HIV-1-specific sIgA were rapidly induced through IN immunization in situ and distant mucosal sites, although the immune responses are relatively weak. Furthermore, the HIV-1-specific IgG and IgA antibody levels in mucosal secretions were enhanced and maintained, while production of serum NAbs against heterologous HIV-1 tier 1 and 2 pseudoviruses was elicited after IM boost. Additionally, situ mucosal responses and systemic T cell immune responses were improved by rAd2-gp120AE boost immunization via the IN and IM routes. These results suggested that BLP-based delivery in combination with the IN and IM immunization approach represents a potential vaccine strategy against HIV-1.  相似文献   

6.
Combined oral/nasal immunization protects mice from Sendai virus infection   总被引:21,自引:0,他引:21  
Based on the concept of a common mucosal immune system wherein mucosal associated lymphocytes traffic among the various mucous membranes, the murine gastrointestinal tract was immunized with Sendai virus antigens in order to elicit a virus-specific immune response in the respiratory tract. Multiple intragastric (oral) administration of live or killed Sendai virus induced IgA and IgG antiviral antibodies in both gastrointestinal secretions and serum. When cholera toxin as an adjuvant was included along with virus, gut IgA and IgG as well as serum IgA responses were enhanced. Antiviral antibodies induced in respiratory secretions by oral killed virus plus cholera toxin, however, were variable and protection from virus challenge was not demonstrated. Significantly higher levels of respiratory antiviral antibodies were induced if immunization with oral killed Sendai virus/cholera toxin was combined with intranasal administration of small amounts of killed virus. The combined immunization also resulted in protection of both the upper and lower respiratory tracts from virus infection. Protection of the upper respiratory tract was correlated with the presence of IgA antiviral antibodies in nasal washings. On the other hand, protection of the lower respiratory tract was correlated with IgG antiviral antibodies in bronchoalveolar lavage fluids. Immunization with intranasal killed virus alone conferred partial protection to the lower respiratory tract and no protection to the upper respiratory tract. Thus, oral immunization with killed virus antigen could prime for a protective immune response in the murine respiratory tract and this protective response included IgA antibodies.  相似文献   

7.
目的评价PorA、PorB和Class4对流感裂解疫苗的免疫增强作用,从中挑选出最有效的流感黏膜佐剂,为发展流感黏膜疫苗提供理论基础。方法流感三价裂解抗原按比例与PorA、PorB和Class4非共价结合,滴鼻免疫Balb/c小鼠3次,采取间接ELISA检测血清特异性IgG抗体及抗体亚型,检测鼻咽、肺、小肠和阴道冲洗液中IgA效价,采用血凝抑制试验检测血清中HAI效价。结果PorB重组蛋白佐剂组较无佐剂的流感裂解抗原组在提高小鼠早期免疫应答的同时诱导较强的系统免疫应答和黏膜免疫应答;PorA组也有黏膜佐剂的功能,但和无佐剂的流感裂解抗原组相比,差异无统计学意义。结论在蛋白体的三分子中,以PorB为佐剂的流感黏膜疫苗不仅提高了抗原的系统免疫应答,而且诱导了较强的小鼠呼吸道、生殖道的局部黏膜免疫应答,为流感黏膜疫苗的研制奠定了理论基础。  相似文献   

8.
To specifically induce a mucosal antibody response to purified human papillomavirus type 16 (HPV16) virus-like particles (VLP), we immunized female BALB/c mice orally, intranasally, and/or parenterally and evaluated cholera toxin (CT) as a mucosal adjuvant. Anti-HPV16 VLP immunoglobulin G (IgG) and IgA titers in serum, saliva, and genital secretions were measured by enzyme-linked immunosorbent assay (ELISA). Systemic immunizations alone induced HPV16 VLP-specific IgG in serum and, to a lesser extent, in genital secretions but no secretory IgA. Oral immunization, even in the presence of CT, was inefficient. However, three nasal immunizations with 5 μg of VLP given at weekly intervals to anesthetized mice induced high (>104) and long-lasting (>15 weeks) titers of anti-HPV16 VLP antibodies in all samples, including IgA and IgG in saliva and genital secretions. CT enhanced the VLP-specific antibody response 10-fold in serum and to a lesser extent in saliva and genital secretions. Nasal immunization of conscious mice compared to anesthetized mice was inefficient and correlated with the absence of uptake of a marker into the lung. However, a 1-μg VLP systemic priming followed by two 5-μg VLP intranasal boosts in conscious mice induced both HPV16 VLP-specific IgG and IgA in secretions, although the titers were lower than in anesthetized mice given three intranasal immunizations. Antibodies in serum, saliva, and genital secretions of immunized mice were strongly neutralizing in vitro (50% neutralization with ELISA titers of 65 to 125). The mucosal and systemic/mucosal HPV16 VLP immunization protocols that induced significant titers of neutralizing IgG and secretory IgA in mucosal secretions in mice may be relevant to genital HPV VLP-based human vaccine trials.  相似文献   

9.
The aim of the present study was to develop mannosylated niosomes as oral vaccine delivery carrier and adjuvant for the induction of humoral, cellular, and mucosal immunity. Tetanus toxoid (TT) loaded niosomes composed of sorbiton monostearate (Span 60), cholesterol, and stearylamine were prepared by the reverse-phase evaporation method. They were coated with a modified polysaccharide o-palmitoyl mannan (OPM) to protect them from bile salts caused dissolution and enzymatic degradation in the gastrointestinal tract and to enhance their affinity toward the antigen presenting cells of Peyer's patches. Prepared niosomes were characterized in vitro for their size, shape, entrapment efficiency, ligand binding specificity, and stability in simulated gastric fluid and simulated intestinal fluid. OPM-coated niosomes were found to more stable in simulated gastrointestinal conditions. The immune stimulating activity was studied by measuring serum IgG titer, IgG2a/IgG1 ratio in serum, and sIgA levels in intestinal and salivary secretions following oral administration of niosomal formulations in albino rats. The results were compared with alum-adsorbed TT following oral and intramuscular administration, and it was observed that OPM-coated niosomes produced better IgG levels as compared to plain uncoated niosomes and alum-adsorbed TT upon oral administration. Oral niosomes also elicited a significant mucosal immune response (sIgA levels in mucosal secretions). The developed formulations also elicited a combined serum IgG2a/IgG1 response, suggesting that they were capable of eliciting both humoral and cellular response. The study signifies the potential of OPM-coated niosomes as an oral vaccine delivery carrier and adjuvant. The proposed system is simple, stable, and cost-effective and may be clinically acceptable.  相似文献   

10.
The aim of the present study was to develop mannosylated niosomes as oral vaccine delivery carrier and adjuvant for the induction of humoral, cellular, and mucosal immunity. Tetanus toxoid (TT) loaded niosomes composed of sorbiton monostearate (Span 60), cholesterol, and stearylamine were prepared by the reverse-phase evaporation method. They were coated with a modified polysaccharide o-palmitoyl mannan (OPM) to protect them from bile salts caused dissolution and enzymatic degradation in the gastrointestinal tract and to enhance their affinity toward the antigen presenting cells of Peyer's patches. Prepared niosomes were characterized in vitro for their size, shape, entrapment efficiency, ligand binding specificity, and stability in simulated gastric fluid and simulated intestinal fluid. OPM-coated niosomes were found to more stable in simulated gastrointestinal conditions. The immune stimulating activity was studied by measuring serum IgG titer, IgG2a/IgG1 ratio in serum, and sIgA levels in intestinal and salivary secretions following oral administration of niosomal formulations in albino rats. The results were compared with alum-adsorbed TT following oral and intramuscular administration, and it was observed that OPM-coated niosomes produced better IgG levels as compared to plain uncoated niosomes and alum-adsorbed TT upon oral administration. Oral niosomes also elicited a significant mucosal immune response (sIgA levels in mucosal secretions). The developed formulations also elicited a combined serum IgG2a/IgG1 response, suggesting that they were capable of eliciting both humoral and cellular response. The study signifies the potential of OPM-coated niosomes as an oral vaccine delivery carrier and adjuvant. The proposed system is simple, stable, and cost-effective and may be clinically acceptable.  相似文献   

11.
To develop an efficient nasal influenza vaccine, influenza A and B virus HA with rCTB as a mucosal adjuvant were administered to mice intranasally. Serum anti-HA IgG and IgA antibody responses for both HA vaccines were significantly increased in the presence of rCTB. Higher HI and neutralizing antibody titers and higher mucosal IgA antibody responses in the respiratory tract were detected when rCTB was added than without rCTB. When mice were immunized with HA vaccine with or without rCTB and challenged by intranasal administration of mouse-adapted pathogenic influenza A virus, all mice immunized with HA plus rCTB survived for seven days without any inflammatory changes in the lungs, while not all the mice immunized with HA without rCTB survived, and all of them had lung consolidations. These results demonstrate that intranasal co-administration of rCTB as a mucosal adjuvant with influenza virus HA is necessary not only for the induction of systemic and mucosal HA antibodies, but also for the protection of mice from morbidity and mortality resulting from virus infection.  相似文献   

12.
IgA knockout mice (IgA-/-) were generated by gene targeting and were used to determine the role of IgA in protection against mucosal infection by influenza and the value of immunization for preferential induction of secretory IgA. Aerosol challenge of naive IgA-/- mice and their wild-type IgA+/+ littermates with sublethal and lethal doses of influenza virus resulted in similar levels of pulmonary virus infection and mortality. Intranasal and i.p. immunization with influenza vaccine plus cholera toxin/cholera toxin B induced significant mucosal and serum influenza hemagglutinin-specific IgA Abs in IgA+/+ (but not IgA-/-) mice as well as IgG and IgM Abs in both IgA-/- and IgA+/+ mice; both exhibited similar levels of pulmonary and nasal virus replication and mortality following a lethal influenza virus challenge. Monoclonal anti-hemagglutinin IgG1, IgG2a, IgM, and polymeric IgA Abs were equally effective in preventing influenza virus infection in IgA-/- mice. These results indicate that IgA is not required for prevention of influenza virus infection and disease. Indeed, while mucosal immunization for selective induction of IgA against influenza may constitute a useful approach for control of influenza and other respiratory viral infections, strategies that stimulate other Igs in addition may be more desirable.  相似文献   

13.
Secretory IgA is presumed to be the mediator of mucosal immunity based on many studies that show a correlation between protection and secretory IgA titers; however, a causal relationship has not yet been established. Classically, passive transfer of antibody has been used to demonstrate causality, but the passive transfer of local immunity with physiologically transported IgA has not been previously reported. In this study mice were injected intravenously with polymeric IgA (pIgA), monomeric IgA (mIgA), or IgG1 mAb specific for the H1 hemaglutinin of PR8 influenza virus. pIgA was shown to be specifically transported into nasal secretions relative to the mIg. The transported pIgA was functional, as evidenced by its ability to bind to virus in an ELISA assay and to protect nonimmune mice against intranasal infection with H1N1 but not H3N2 influenza virus. Intravenous injection of similar virus-neutralizing doses of anti-influenza IgG1 mAb did not protect against nasal viral challenge. IgA-mediated protection could be abrogated by the intranasal administration of antiserum against the alpha chain of IgA. These data demonstrate the passive transfer of local immunity by the i.v. administration of pIgA antibody and show that the IgA in secretions can protect against influenza virus infection. This general approach could provide a model for the evaluation of the role of local IgA in host defense against other pathogens.  相似文献   

14.
The antiviral neuraminidase inhibitor oseltamivir (OSV) is widely used to suppress viral replication in the treatment of influenza. Here, we report that OSV administration significantly suppressed respiratory mucosal secretory IgA responses with respect to antigen (Ag)-specific antibody (Ab) production and also the induction of Ag-specific IgA Ab-forming cells, but not systemic IgG responses, in weanling mice as a model of pediatric influenza. Neutralizing activities of the airway fluids in oral OSV-treated mice were significantly less than those of sham-treated mice. Our findings suggest the risk of re-infection in patients showing a low mucosal response following OSV treatment.  相似文献   

15.
Sublingual (SL) and intranasal (IN) administration of a Bacillus subtilis-based tetanus vaccine was tested in piglets, which more closely mimic the human immune system than mice. Piglets were immunized by the SL, IN or oral routes with vaccine expressing tetanus toxin fragment C, or commercial tetanus vaccine given by intramuscular injection as a control. Tetanus toxoid specific ELISA and passive neutralization tests were used to measure IgG and IgA levels in serum and mucosal secretions, and assess protective serum antibodies, respectively. The nature of the immune response was explored by MHC Class II, TGF-β1 expression, and ELISA assays for multiple cytokines. SL or IN immunization of piglets induced neutralizing tetanus toxoid specific serum antibody and local salivary and vaginal IgA responses. Standard tetanus vaccine resulted in systemic antibodies, whereas oral administration of the Bacillus-based vaccine was ineffective. Further analyses indicated a balanced Th1/Th2 response to SL or IN immunization. CONCLUSION: This study demonstrates for the first time that SL or IN administration is effective for inducing both systemic and mucosal responses in a piglet model, indicating that SL or IN delivery of a B. subtilis-based tetanus vaccine can be a simple, non-invasive, low cost strategy to induce immunity to tetanus.  相似文献   

16.
A serum hemagglutination inhibition (HAI) titer of 40 or greater is thought to be associated with reduced influenza virus pathogenesis in humans and is often used as a correlate of protection in influenza vaccine studies. We have previously demonstrated that intramuscular vaccination of guinea pigs with inactivated influenza virus generates HAI titers greater than 300 but does not protect vaccinated animals from becoming infected with influenza virus by transmission from an infected cage mate. Only guinea pigs intranasally inoculated with a live influenza virus or a live attenuated virus vaccine, prior to challenge, were protected from transmission (A. C. Lowen et al., J. Virol. 83:2803–2818, 2009.). Because the serum HAI titer is mostly determined by IgG content, these results led us to speculate that prevention of viral transmission may require IgA antibodies or cellular immune responses. To evaluate this hypothesis, guinea pigs and ferrets were administered a potent, neutralizing mouse IgG monoclonal antibody, 30D1 (Ms 30D1 IgG), against the A/California/04/2009 (H1N1) virus hemagglutinin and exposed to respiratory droplets from animals infected with this virus. Even though HAI titers were greater than 160 1 day postadministration, Ms 30D1 IgG did not prevent airborne transmission to passively immunized recipient animals. In contrast, intramuscular administration of recombinant 30D1 IgA (Ms 30D1 IgA) prevented transmission to 88% of recipient guinea pigs, and Ms 30D1 IgA was detected in animal nasal washes. Ms 30D1 IgG administered intranasally also prevented transmission, suggesting the importance of mucosal immunity in preventing influenza virus transmission. Collectively, our data indicate that IgG antibodies may prevent pathogenesis associated with influenza virus infection but do not protect from virus infection by airborne transmission, while IgA antibodies are more important for preventing transmission of influenza viruses.  相似文献   

17.
The importance of IgA for protection at mucosal surfaces remains unclear, and in fact, it has been reported that IgA-deficient mice have fully functional vaccine-induced immunity against several bacterial and viral pathogens. The role of respiratory Ab in preventing colonization by Streptococcus pneumoniae has now been examined using polymeric IgR knockout (pIgR(-/-)) mice, which lack the ability to actively secrete IgA into the mucosal lumen. Intranasal vaccination with a protein conjugate vaccine elicited serotype-specific anti-capsular polysaccharide Ab locally and systemically, and pIgR(-/-) mice produced levels of total serum Ab after vaccination that were similar to wild-type mice. However, pIgR(-/-) mice had approximately 5-fold more systemic IgA and 6-fold less nasal IgA Ab than wild-type mice due to defective transport into mucosal tissues. Wild-type, but not pIgR(-/-) mice were protected against infection with serotype 14 S. pneumoniae, which causes mucosal colonization but does not induce systemic inflammatory responses in mice. The relative importance of secretory IgA in host defense was further shown by the finding that intranasally vaccinated IgA gene-deficient mice were not protected from colonization. Although secretory IgA was found to be important for protection against nasal carriage, it does not appear to have a crucial role in immunity to systemic pneumococcus infection, because both vaccinated wild-type and pIgR(-/-) mice were fully protected from lethal systemic infection by serotype 3 pneumococci. The results demonstrate the critical role of secretory IgA in protection against pneumococcal nasal colonization and suggest that directed targeting to mucosal tissues will be needed for effective vaccination in humans.  相似文献   

18.
The intranasal administration of influenza hemagglutinin (HA) vaccine with Surfacten, a modified pulmonary surfactant free of antigenic c-type lectins, as a mucosal adjuvant induced the highest protective mucosal immunity in the airway. The intranasal immunization of mice with HA vaccine (0.2 microg)-Surfacten (0.2 microg) selectively induced the neutralizing anti-HA IgA, but not IgG, and conferred nearly maximal protection in the airway, without inducing a systemic response. In contrast, intranasal inoculation of vaccine with 0.2 microg of the potent mucosal adjuvant cholera toxin B* (CT-B*), prepared by adding 0.2% native CT to the B subunit of CT, induced both anti-HA IgA and IgG in the airway and in the serum. The intranasal administration of HA vaccine alone induced a limited amount of mucosal IgA against influenza virus. Although the s.c. administration of HA vaccine prominently induced serum IgG and IgA, Surfacten and CT-B* did not enhance their induction, and the concentrations of Abs leaking into the airways were insufficient to prevent viral multiplication. The intranasal administration of HA-Surfacten stimulated the expression of MHC class II, CD40, and CD86 molecules in the CD11c-positive cells isolated from the nasal mucosa, but not the expression of cells from the lungs or spleens. Lymphocytes isolated from the airway mucosa after intranasal HA-Surfacten immunization prominently induced TGF-beta1 which, compared with inoculation without Surfacten, promoted an Ag-specific mucosal IgA response. Surfacten alone, however, did not induce TGF-beta1. Our observations suggest that Surfacten, by mimicking the natural surfactant, is an effective mucosal adjuvant in the process of airway immunization.  相似文献   

19.
A novel neurotoxoid vaccine prevents mucosal botulism   总被引:4,自引:0,他引:4  
The threat posed by botulism, classically a food- and waterborne disease with a high morbidity and mortality, has increased exponentially in an age of bioterrorism. Because botulinum neurotoxin (BoNT) could be easily disseminated by terrorists using an aerosol or could be used to contaminate the food or water supply, the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases has classified it as a category A agent. Although clearly the development of a safe and effective mucosal vaccine against this toxin should be a high priority, essentially no studies to date have assessed mucosal immune responses to this disease. To bridge this gap in our knowledge, we immunized mice weekly for 4 wk with nasal doses of BoNT type A toxoid and a mutant of cholera toxin termed E112K. We found elevated levels of BoNT-specific IgG Abs in plasma and of secretory IgA Abs in external secretions (nasal washes, saliva, and fecal extracts). When mice given nasal BoNT vaccine were challenged with 4 x 10(3) LD50 of BoNT type A (BoNT/A) via the i.p. route, complete protection was seen, while naive mice given the same dosage died within 2 h. To further confirm the efficacy of this nasal BoNT vaccine, an oral LD50 was determined. When mice were given an oral challenge of 5 microg (2 x oral LD50) of progenitor BoNT/A, all immunized mice survived beyond 5 days, while nonimmunized mice did not. The fecal extract samples from nasally vaccinated mice were found to contain neutralizing secretory IgA Abs. Taken together, these results show that nasal BoNT/A vaccine effectively prevents mucosal BoNT intoxication.  相似文献   

20.
Abstract

Liposomes exhibit potent immunoadjuvant activity in a variety of experimental vaccine formulations. We have investigated the mucosal adjuvant activity of liposomes in an influenza subunit vaccine. Mice were immunized intranasally (I.N.) with the major surface antigen of influenza virus, hemagglutinin (HA), mixed with negatively charged liposomes. Inclusion of the liposomes in the vaccine resulted in a marked stimulation of the serum IgG response against the antigen. In addition, the liposomal preparation, but not the antigen alone, induced a significant secretory IgA (s-IgA) response, not only in the lungs and nasal cavity, but also at the mucosa of the urogenital tract. The adjuvant activity of the liposomes appeared to be independent of a physical association of the antigen with the liposomes: Stimulation of antibody responses was observed even when liposomes and antigen were administered separately in time. Serum IgG and local s-IgA responses to I.N. immunization with the liposomal vaccine were comparable to the corresponding responses induced by an influenza infection. Mice immunized with the liposomal vaccine or mice recovered from an influenza infection were completely protected from (re)infection. Protection from nasal infection was abrogated by treatment of the mice with an anti-IgA antiserum, while anti-IgG had no effect, indicating that s-IgA plays an essential role in nasal anti-influenza immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号