共查询到20条相似文献,搜索用时 25 毫秒
1.
Rye KA Wee K Curtiss LK Bonnet DJ Barter PJ 《The Journal of biological chemistry》2003,278(25):22530-22536
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations. 相似文献
2.
Evidence that apolipoprotein A-I facilitates hepatic lipase-mediated phospholipid hydrolysis in reconstituted HDL containing apolipoprotein A-II 总被引:1,自引:0,他引:1
This study examines hepatic lipase (HL) mediated phospholipid hydrolysis in mixtures of apolipoprotein-specific, spherical reconstituted high-density lipoproteins (rHDL). We have shown previously that apolipoprotein A-I (apoA-I) and apoA-II have a major influence on the kinetics of HL-mediated phospholipid and triacylglycerol hydrolysis in well-characterized, homogeneous preparations of spherical rHDL [Hime, N. J., Barter, P. J., and Rye, K.-A. (1998) J. Biol. Chem. 273, 27191-27198]. In the present study, phospholipid hydrolysis was assessed in mixtures of rHDL containing either apoA-I only, (A-I)rHDL, apoA-II only, (A-II)rHDL, or both apoA-I and apoA-II, (A-I/A-II)rHDL. The rHDL contained trace amounts of radiolabeled phospholipid, and hydrolysis was measured as the formation of radiolabeled nonesterified fatty acids (NEFA). As predicted from our previous kinetic studies, the (A-II)rHDL acted as competitive inhibitors of HL-mediated phospholipid hydrolysis in (A-I)rHDL. Less expected was the observation that the rate of phospholipid hydrolysis in (A-II)rHDL was enhanced when (A-I)rHDL were also present in the incubation mixture. The rate of phospholipid hydrolysis in (A-I/A-II)rHDL was also greater than in (A-II)rHDL, indicating that apoA-I enhances phospholipid hydrolysis when it is present as a component of (A-I/A-II)rHDL. It is concluded that apoA-I enhances HL-mediated phospholipid hydrolysis in apoA-II containing rHDL, irrespective of whether the apoA-I is present in the same particle as the apoA-II [as in (A-I/A-II)rHDL] or whether it is present as a component of a different particle, such as when (A-I)rHDL are added to incubations of (A-II)rHDL. 相似文献
3.
Interaction of apolipoprotein A-II with recombinant HDL containing egg phosphatidylcholine, unesterified cholesterol and apolipoprotein A-I 总被引:1,自引:0,他引:1
K A Rye 《Biochimica et biophysica acta》1990,1042(2):227-236
The preparation of discoidal, recombinant HDL (r-HDL) containing various phospholipids, apolipoproteins and a range of concentrations of unesterified cholesterol has been reported by several investigators. The present study describes the preparation of r-HDL containing both apolipoprotein (apo) A-I and apo A-II. r-HDL with 100:1 (mol:mol) egg PC.apo A-I and 0 (Series I), 5 (Series II) or 10 (Series III) mol% unesterified cholesterol were prepared by the cholate dialysis method. The resulting complexes had a Stokes' radius of 4.7 nm and contained two molecules of apo A-I per particle. When the r-HDL (2.0 mg apo A-I) were supplemented with 1.0 mg of apo A-II, one of the apo A-I molecules was replaced by two molecules of apo A-II. This modification was not accompanied by a loss of phospholipid, nor by major change in particle size. The addition of 2.5 or 4.0 mg of apo A-II resulted in the displacement of both apo A-I molecules from a proportion of the r-HDL and the formation of smaller particles (Stokes' radius 3.9 nm), which contained half the original number of egg PC molecules and three molecules of apo A-II. The amount of apo A-I displaced was dependent on the concentration of unesterified cholesterol in the r-HDL: when 2.5 mg of apo A-II was added to the Series I, II and III r-HDL, 44, 60 and 70%, respectively, of the apo A-I was displaced. Addition of 4.0 mg of apo A-II did not promote further displacement of apo A-I from any of the r-HDL. By contrast, the association of apo A-II with r-HDL was independent of the concentration of unesterified cholesterol and was a linear function of the amount of apo A-II which had been added. It is concluded that (1), the structural integrity of egg PC.unesterified cholesterol.apo A-I r-HDL, which contain two molecules of apo A-I, is not affected when one of the apo A-I molecules is replaced by two molecules of apo A-II; (2), when both apo A-I molecules are replaced by apo A-II, small particles which contain three molecules of apo A-II are formed; and (3), the displacement of apo A-I from r-HDL is facilitated by the presence of unesterified cholesterol in the particles. 相似文献
4.
R W James D Hochstrasser J D Tissot M Funk R Appel F Barja C Pellegrini A F Muller D Pometta 《Journal of lipid research》1988,29(12):1557-1571
The protein heterogeneity of fractions isolated by immunoaffinity chromatography on anti-apolipoprotein A-I and anti-apolipoprotein A-II affinity columns was analyzed by high resolution two-dimensional gel electrophoresis. The two-dimensional gel electrophoresis profiles of the fractions were analyzed and automatically compared by the computer system MELANIE. Fractions containing apolipoproteins A-I + A-II and only A-I as the major protein components have been isolated from plasma and from high density lipoproteins prepared by ultracentrifugation. Similarities between the profiles of the fractions, as indicated by two-dimensional gel electrophoresis, suggested that those derived from plasma were equivalent to those from high density lipoproteins (HDL), which are particulate in nature. The established apolipoproteins (A-I, A-II, A-IV, C, D, and E) were visible and enriched in fractions from both plasma and HDL. However, plasma-derived fractions showed a much greater degree of protein heterogeneity due largely to enrichment in bands corresponding to six additional proteins. They were present in trace amounts in fractions isolated from HDL and certain of the proteins were visible in two-dimensional gel electrophoresis profiles of the plasma. These proteins are considered to be specifically associated with the immunoaffinity-isolated particles. They have been characterized in terms of Mr and pI. Computer-assisted measurements of protein spot-staining intensities suggest an asymmetric distribution of the proteins (as well as the established apolipoproteins), with four showing greater prominence in particles containing apolipoprotein A-I but no apolipoprotein A-II. 相似文献
5.
Pathways in the formation of human plasma high density lipoprotein subpopulations containing apolipoprotein A-I without apolipoprotein A-II 总被引:1,自引:0,他引:1
The lecithin:cholesterol acyltransferase (LCAT)-induced transformation of two discrete species of model complexes that differ in number of apolipoprotein A-I (apoA-I) molecules per particle was investigated. One complex species (designated 3A-I(UC)-complexes) contained 3 apoA-I per particle, was discoidal (13.5 X 4.4 nm), and had a molar composition of 22:78:1 (unesterified cholesterol (UC):egg yolk phosphatidylcholine (egg yolk PC):apoA-I). The other complex species (designated 2A-I(UC)complexes) containing 2 apoA-I per particle was also discoidal (8.4 X 4.1 nm) and had a molar composition of 6:40:1. Transformation of 3A-I(UC)complexes by partially purified LCAT yielded a product (24 hr, 37 degrees C) with a cholesteryl ester (CE) core, 3 apoA-I, and a mean diameter of 9.2 nm. The 2A-I(UC)complexes were only partially transformed to a core-containing product (24 hr, 37 degrees C) which also had 3 apoA-I; this product, however, was smaller (diameter of 8.5 nm) than the product from 3A-I(UC)complexes. Transformation of 3A-I(UC)complexes appeared to result from build-up of core CE directly within the precursor complex. Transformation of 2A-I(UC)complexes, however, followed a stepwise pathway to the product with 3 apoA-I, apparently involving fusion of transforming precursors and release of one apoA-I from the fusion product. In the presence of low density lipoprotein (LDL), used as a source of additional cholesterol, conversion of 2A-I(UC)complexes to the product with 3 apoA-I was more extensive. The transformation product of 3A-I(UC)complexes in the presence of LDL also had 3 apoA-I but was considerably smaller in size (8.6 vs. 9.2 nm, diameter) and had a twofold lower molar content of PC compared with the product formed without LDL. LDL appeared to act both as a donor of UC and an acceptor of PC. Transformation products with 3 apoA-I obtained under the various experimental conditions in the present studies appear to be constrained in core CE content (between 13 to 22 CE per apoA-I; range of 9 CE molecules) but relatively flexible in content of surface PC molecules they can accommodate (between 24 to 49 PC per apoA-I; range of 25 PC molecules). The properties of the core-containing products with 3 apoA-I compare closely with those of the major subpopulation of human plasma HDL in the size range of 8.2-8.8 nm that contains the molecular weight equivalent of 3 apoA-I molecules. 相似文献
6.
Interconversion of prebeta-migrating lipoproteins containing apolipoprotein A-I and HDL 总被引:1,自引:0,他引:1
Mouse plasma from strains C57BL/6J and C3H/HeJ includes a high density lipoprotein (HDL) fraction containing apolipoprotein A-I which migrates in the prebeta region upon agarose gel electrophoresis, similar to the prebeta HDL previously reported in humans. This prebeta A-I lipoprotein species has a buoyant density of 1.080-1.210 g/ml and has two molecular weight species, 65,000 and 71,000. It is lipid-poor and deficient in apolipoprotein E. When mice are fed a high fat and high cholesterol diet, the quantity of prebeta A-I increases in both strains as determined by quantitative densitometry of agarose gel immunoblots. Prebeta A-I species are highly unstable in plasma at 37 degrees C. Initially (0-1 h) levels decreased and with further incubation (1-8 h) levels increased. Nondenaturing polyacrylamide gel electrophoresis (PAGE) demonstrated that the prebeta HDL formed during prolonged incubation (1-8 h) was identical in size to HDL in unincubated samples. The initial decrease of prebeta HDL observed during the first hour of incubation, phase I, was inhibited by DTNB, suggesting that phase I is dependent on lecithin:cholesterol acyltransferase (LCAT); however, the subsequent increase, phase II, was unaffected by DTNB and appears LCAT-independent. The prebeta A-I species formed in plasma containing DTNB after a 4-h incubation resulted in a polydisperse particle size distribution. The two strains, the atherosclerosis-susceptible C57BL/6 and -resistant C3H, displayed a similar elevation and induction of prebeta HDL during a dietary switch from laboratory chow to an atherogenic diet with a transient peak occurring at 7 days even when total HDL in the susceptible strain was greatly reduced. 相似文献
7.
Effect of apolipoprotein A-I lipidation on the formation and function of pre-beta and alpha-migrating LpA-I particles 总被引:2,自引:0,他引:2
A unique class of lipid-poor high-density lipoprotein, pre-beta1 HDL, has been identified and shown to have distinct functional characteristics associated with intravascular cholesterol transport. In this study we have characterized the structure/function properties of poorly lipidated HDL particles and the factors that mediate their conversion into multimolecular lipoprotein particles. Studies were undertaken with homogeneous recombinant HDL particles (LpA-I) containing apolipoprotein (apo) A-I and various amounts of palmitoyloleoylphosphatidylcholine (PC) and cholesterol. Complexation of apoA-I with small amounts of PC and cholesterol results in the formation of discrete lipoprotein structures that have a hydrated diameter of about 6 nm but contain only one molecule of apoA-I (Lp1A-I). While the molecular charge and alpha-helix content of apoA-I are unaffected by lipidation, the thermodynamic stability of the protein is reduced significantly (from 2.4 to 0.9 kcal/mol of apoA-I). Evaluation of apoA-I conformation by competitive radioimmunoassay with monoclonal antibodies shows that addition of small amounts of PC and cholesterol to apoA-I significantly increases the immunoreactivity of a number of domains over the entire molecule. Increasing the ratio of PC:apoA-I to 10:1 in the Lp1A-I complex is associated with increases in the alpha-helix content and stability of apoA-I. However, incorporation of 10-15 mol of PC destabilizes the Lp1A-I complex and promotes the formation of more thermodynamically stable (1.8 kcal/mol of apoA-I) bimolecular structures (Lp2A-I) that are approximately 8 nm in diameter. The formation of an Lp2A-I particle is associated with an increased immunoreactivity of most of the epitopes studied, with the exception of one central domain (residues 98-121), which becomes significantly less exposed. This structural change parallels a significant increase in the net negative charge on the complex. Characterization of the ability of these lipoproteins to act as substrates for lecithin:cholesterol acyltransferase (LCAT) shows that unstable Lp1A-I complexes stimulate a higher rate of cholesterol esterification by LCAT than the small but more stable Lp2A-I particles (Vmax values are 5.8 and 0.3 nmol of free cholesterol esterified/h, respectively). The ability of LCAT to interact with lipid-poor apoA-I suggests that LCAT does not need to bind to the lipid interface on an HDL particle but that LCAT may directly interact with apoA-I. The data suggests that lipid-poor HDL particles may be metabolically reactive particles because they are thermodynamically unstable. 相似文献
8.
Srivastava RA 《Molecular and cellular biochemistry》2000,209(1-2):125-129
The levels of plasma apolipoprotein (apo) E, an anti-atherogenic protein involved in mammalian cholesterol transport, were found to be 2-3 fold lower in mice over-expressing human apoA-I gene. ApoE is mainly associated with VLDL and HDL-size particles, but in mice the majority of the apoE is associated with the HDL particles. Over-expression of the human apoA-I in mice increases the levels of human apoA-I-rich HDL particles by displacing mouse apoA-I from HDL. This results in lowering of plasma levels of mouse apoA-I. Since plasma levels of apoE also decreased in the apoA-I transgenic mice, the mechanism of apoE lowering was investigated. Although plasma levels of apoE decreased by 2-3 fold, apoB levels remained unchanged. As expected, the plasma levels of human apoA-I were almost 5-fold higher in the apoAI-Tg mice compared to mouse apoA-I in WT mice. If the over-expression of human apoA-I caused displacement of apoE from the HDL, the levels of hepatic apoE mRNA should remain the same in WT and the apoAI-Tg mice. However, the measurements of apoE mRNA in the liver showed 3-fold decreases of apoE mRNA in apoAI-Tg mice as compared to WT mice, suggesting that the decreased apoE mRNA expression, but not the displacement of the apoE from HDL, resulted in the lowering of plasma apoE in apoAI-Tg mice. As expected, the levels of hepatic apoA-I mRNA (transgene) were 5-fold higher in the apoAI-Tg mice. ApoE synthesis measured in hepatocytes also showed lower synthesis of apoE in the apoAI-Tg mice. These studies suggest that the integration of human apoA-I transgene in mouse genome occurred at a site that affected apoE gene expression. Identification of this locus may provide further understanding of the apoE gene expression. 相似文献
9.
10.
11.
Two populations of A-I-containing lipoprotein particles: A-I-containing lipoprotein with A-II (Lp (A-I with A-II], and A-I-containing lipoprotein without A-II (Lp (A-I without A-II] have been isolated from plasma of 10 normolipidemic subjects by immunoaffinity chromatography and characterized. Both types of particles possess alpha-electrophoretic mobility and hydrated density in the range of plasma high-density lipoproteins (HDL). Lp (A-I without A-II) and Lp (A-I with A-II) are heterogeneous in size. Lp (A-I without A-II) comprised two distinct particle sizes with mean apparent molecular weight and Stokes diameter of 3.01 X 10(5), and 10.8 nm for Lp (A-I without A-II)1, and 1.64 X 10(5), and 8.5 nm for Lp (A-I without A-II)2. Lp (A-I with A-II) usually contained particles of at least three distinct molecular sizes with mean apparent molecular weight and Stokes diameter of 2.28 X 10(5) and 9.6 nm for Lp (A-I with A-II)1, 1.80 X 10(5) and 8.9 nm for Lp (A-I with A-II)2, and 1.25 X 10(5) and 8.0 nm for Lp (A-I with A-II)3. Apoproteins C, D, and E, and lecithin:cholesterol acyltransferase (LCAT) were detected in both Lp (A-I without A-II) and Lp (A-I with A-II) with most of the apoprotein D, and E, and LCAT (EC 2.3.1.43) in Lp (A-I with A-II) particles. Lp (A-I without A-II) had a slightly higher lipid/protein ratio than Lp (A-I with A-II). Lp (A-I with A-II) had an A-I/A-II molar ratio of approximately 2:1. The percentage of plasma A-I associated with Lp (A-I without A-II) was highly correlated with the A-I/A-II ratio of plasma (r = 0.96, n = 10). The variation in A-I/A-II ratio of HDL density subfractions therefore reflects different proportions of two discrete types of particles: particles containing A-I and A-II in a nearly constant ratio and particles containing A-II but no A-II. Each type of particle is heterogeneous in size and in apoprotein composition. 相似文献
12.
In vivo metabolism of apolipoprotein A-I on high density lipoprotein particles LpA-I and LpA-I,A-II. 总被引:6,自引:0,他引:6
D J Rader G Castro L A Zech J C Fruchart H B Brewer 《Journal of lipid research》1991,32(11):1849-1859
Apolipoprotein (apo) A-I is the major protein in high density lipoproteins (HDL) and is found in two major subclasses of lipoproteins, those containing apolipoprotein A-II (termed LpA-I,A-II) and those without apoA-II (termed LpA-I). The in vivo kinetics of apoA-I on LpA-I and LpA-I,A-II were investigated in normolipidemic human subjects. In the first series of studies, radiolabeled apoA-I and apoA-II were reassociated with autologous plasma lipoproteins and injected into normal subjects. LpA-I and LpA-I,A-II were isolated from plasma at selected time points by immunoaffinity chromatography. By 24 h after injection, only 52.8 +/- 1.0% of the apoA-I in LpA-I remained, whereas 66.9 +/- 2.7% of apoA-I in LpA-I,A-II remained (P less than 0.01). In the second series of studies, purified apoA-I was labeled with either 131I or 125I and reassociated with autologous plasma. Isolated LpA-I and LpA-I,A-II particles differentially labeled with 131I-labeled apoA-I and 125I-labeled apoA-I, respectively, were simultaneously injected into study subjects. The plasma residence time of apoA-I injected on LpA-I (mean 4.39 days) was substantially shorter than that of apoA-I injected on LpA-I,A-II (mean 5.17 days), with a mean difference in residence times of 0.79 +/- 0.08 days (P less than 0.001). These data demonstrate that apoA-I injected on LpA-I is catabolized more rapidly than apoA-I injected on LpA-I,A-II. The results are consistent with the concept that LpA-I and LpA-I,A-II have divergent metabolic pathways. 相似文献
13.
Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells 总被引:6,自引:0,他引:6
A Steinmetz R Barbaras N Ghalim V Clavey J C Fruchart G Ailhaud 《The Journal of biological chemistry》1990,265(14):7859-7863
Cholesterol efflux was studied in cultured mouse adipose cells after preloading with low density lipoprotein cholesterol. Exposure to complexes containing human apolipoprotein A-IV and L-alpha-dimyristoylphosphatidylcholine (DMPC) as well as to human lipoprotein particles containing apolipoprotein A-IV but not apolipoprotein A-I and particles containing apolipoproteins A-IV and A-I showed that both artificial and native apolipoprotein A-IV-containing particles were able to promote cholesterol efflux at 37 degrees C as a function of time and concentration. The half-maximal concentration was found to be 0.3 X 10(-6) M for apolipoprotein A-IV.DMPC complexes. Binding experiments performed in intact cells at 4 degrees C with labeled apolipoprotein A-IV.DMPC complexes showed the existence of specific binding sites, with a Kd value of 0.32 x 10(-6) M and a maximal binding capacity of 223,000 sites/cell. By cross-competition experiments with labeled and unlabeled complexes containing apolipoprotein A-IV, A-I, or A-II, it appeared that all three apolipoproteins bind to the same cell-surface recognition sites. It is suggested that apolipoprotein A-IV, which is present in the interstitial fluid surrounding adipose cells in vivo at concentrations similar to those required in vitro for the promotion of cholesterol efflux, plays a critical role in cholesterol removal from peripheral cells. 相似文献
14.
Shao B 《Biochimica et biophysica acta》2012,1821(3):490-501
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010). 相似文献
15.
Boisfer E Stengel D Pastier D Laplaud PM Dousset N Ninio E Kalopissis AD 《Journal of lipid research》2002,43(5):732-741
Transgenic mice overexpressing human apolipoprotein A-II (huapoA-II) display high VLDL and low HDL levels. To evaluate the antioxidant potential of huapoA-II enriched HDL, we measured the activities of paraoxonase (PON) and platelet-activating factor acetylhydrolase (PAF-AH). Both activities decreased up to 43% in the serum of transgenic mice compared with controls, varied in parallel to HDL levels, but decreased less than HDL levels. The major part of PON and PAF-AH was associated with HDL, except in fed high huapoA-II-expressing mice, in which 20% of PAF-AH and 9% of PON activities were associated with VLDL. PON mRNA levels in the liver, its major site of synthesis, were similar in transgenic and control animals, indicating normal enzyme synthesis. In transgenic mice, the basal oxidation of lipoproteins was not increased, whereas their VLDL were more susceptible to oxidation than VLDL of controls. Interestingly, HDL of transgenic mice protected VLDL from oxidation more efficiently than HDL of controls. In conclusion, the decrease in both PON and PAF-AH activities in huapoA-II transgenic mice is best explained by their lower plasma HDL levels. However, the unchanged basal lipoprotein oxidation in transgenic mice suggests that huapoA-II-rich HDL may maintain adequate antioxidant potential. 相似文献
16.
Baohai Shao 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(3):490-501
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010). 相似文献
17.
PURPOSE OF REVIEW: To rationalize the distinctive biological behavior of apolipoprotein (apo)A-I and apoA-II in light of differences in their respective structures, properties, and physico-chemical behavior. RECENT FINDINGS: The distinctive metabolic behavior of apoA-I compared with that of apoA-II, which are revealed as differences in their interactions with the HDL receptor, scavenger receptor class B type I, can be understood in terms of their physico-chemical properties. Detergent and chaotropic perturbation of HDL unmasks properties that distinguish apoA-I from apoA-II and emulate the secondary effects of lecithin: cholesterol acyltransferase, cholesteryl ester transfer protein, and phospholipid transfer protein - the key protein factors in HDL remodeling, that is, formation of lipid-free apoA-I but not apoA-II and particle fusion. Thus, of the two major HDL apolipoproteins, apoA-I is the more plastic and labile and this difference gives apoA-I a unique physiological role that has been verified in mouse models of HDL metabolism. SUMMARY: The compositions, structures, and properties of HDL particles are important determinants of the mechanisms by which these antiatherogenic lipoproteins are metabolized. Although the plasma lipid transfer proteins and lipid-modifying enzymes are important determinants of HDL processing, the distinctive structures and properties of apoA-I and apoA-II, the two major HDL proteins, determine in different ways the thermodynamic stability of HDL - the former through its greater plasticity and the latter by its higher lipophilicity. These distinctions have been revealed by physico-chemical studies of HDL stability in the context of numerous studies of enzyme and lipid transfer activities and of the interaction of HDL with its hepatic scavenger receptor. 相似文献
18.
Various combinations of incorporation and addition of apolipoprotein A-I (apo A-I) and apolipoprotein A-II (apo A-II) individually or together to a defined lecithin-cholesterol (250/12.5 molar ratio) liposome prepared by the cholate dialysis procedure were used to study the effect of apo A-II on lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) activity of both purified enzyme preparations and plasma. When apo A-I (0.1-3.0 nmol/assay) alone was incorporated or added to the liposome, apo A-I effectively activated the enzyme. By contrast, when apo A-II (0.1-3.0 nmol/assay) alone was incorporated into or added to the liposome, apo A-II exhibited minimal activation of LCAT activity, approximately 1% of the activity obtained by an equal amount of apo A-I. Addition of apo A-II (0.1-3.0 nmol/assay) together with apo A-I (0.8 nmol/assay) to the liposome reduced the LCAT activity to approximately 30% of the level obtained with addition of apo A-I alone. On the other hand, addition of apo A-II (0.1-3.0 nmol/assay) or addition of lecithin-cholesterol liposome containing apo A-II (0.1-3.0 nmol/assay) to lecithin-cholesterol liposome containing apo A-I (0.8 nmol/assay) did not significantly alter apo A-I activation of LCAT activity. However, when the same amounts (0.1-3.0 nmol/assay) of apo A-II were incorporated together with apo A-I (0.8 nmol/assay) into the liposome, apo A-II significantly stimulated LCAT activity as compared to activity obtained with incorporation of apo A-I alone. The maximal stimulation was obtained with 0.4 nmol apo A-II/assay for both purified and plasma enzyme. At this apo A-II concentration, approximately 4-fold and 1.8-fold stimulation was observed for purified enzyme and plasma enzyme, respectively. These results indicated that apo A-II must be incorporated together with apo A-I into lecithin-cholesterol liposomes to exert its stimulatory effect on LCAT activity and that apo A-II in high-density lipoprotein may play an important role in the regulation of LCAT activity. 相似文献
19.
Apolipoprotein A-I(Milano) and apolipoprotein A-I(Paris) exhibit an antioxidant activity distinct from that of wild-type apolipoprotein A-I 总被引:2,自引:0,他引:2
Apolipoprotein A-I(Milano) (apoA-I(Milano)) and apoA-I(Paris) are rare cysteine variants of apoA-I that produce a HDL deficiency in the absence of cardiovascular disease in humans. This paradox provides the basis for the hypothesis that the cysteine variants possess a beneficial activity not associated with wild-type apoA-I (apoA-I(WT)). In this study, a unique antioxidant activity of apoA-I(Milano) and apoA-I(Paris) is described. ApoA-I(Milano) was twice as effective as apoA-I(Paris) in preventing lipoxygenase-mediated oxidation of phospholipids, whereas apoA-I(WT) was poorly active. Antioxidant activity was observed using the monomeric form of the variants and was equally effective before and after initiation of oxidative events. ApoA-I(Milano) protected phospholipid from reactive oxygen species (ROS) generated via xanthine/xanthine oxidase (X/Xo) but failed to inhibit X/Xo-induced reduction of cytochrome c. These results indicate that apoA-I(Milano) was unable to directly quench ROS in the aqueous phase. There were no differences between lipid-free apoA-I(Milano,) apoA-I(Paris), and apoA-I(WT) in mediating the efflux of cholesterol from macrophages, indicating that the cysteine variants interacted normally with the ABCA1 efflux pathway. The results indicate that incorporation of a free thiol within an amphipathic alpha helix of apoA-I confers an antioxidant activity distinct from that of apoA-I(WT). These studies are the first to relate gain of function to rare cysteine mutations in the apoA-I primary sequence. 相似文献
20.
The role of apolipoprotein A-I and apolipoprotein A-II in high-density lipoprotein binding to human adipocyte plasma membranes 总被引:1,自引:0,他引:1
Adipocyte plasma membranes purified from omental fat tissue biopsies of massively obese subjects possess specific binding sites for high-density lipoprotein (HDL3). This binding was independent of apolipoprotein E as HDL3 isolated from plasma of an apolipoprotein E-deficient individual was bound to a level comparable to that of normal HDL3. To examine the importance of apolipoprotein A-I, the major HDL3 apolipoprotein, in the specific binding of HDL3 to human adipocytes, HDL3 modified to contain varying proportions of apolipoproteins A-I and A-II was prepared by incubating normal HDL3 particles with different amounts of purified apolipoprotein A-II. As the apolipoproteins A-I-to-A-II ratio in HDL3 decreased, the binding of these particles to adipocyte plasma membranes was reduced. Compared to control HDL3, a 92 +/- 3.1% reduction (mean +/- S.E., n = 3) in maximum binding capacity was observed along with an increased binding affinity for HDL3 particles in which almost all of the apolipoprotein A-I had been replaced by A-II. The uptake of HDL cholesteryl ester by intact adipocytes as monitored by [3H]cholesteryl ether labeled HDL3, was also significantly reduced (about 35% reduction, P less than 0.005) by substituting apolipoprotein A-II for A-I in HDL3. These data suggest that HDL binding to human adipocyte membranes is mediated primarily by apolipoprotein A-I and that optimal delivery of cholesteryl ester from HDL to human adipocytes is also dependent on apolipoprotein A-I. 相似文献