首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present an assay for 2,3-butanediol by gas chromatography-mass spectrometry of its trimethylsilyl ethers. 2R,3R- and/or 2S,3S-2,3-butanediol and meso-2,3-butanediol are quantitated with corresponding internal standards of [2,3-2H2]butanediol. Limits of detection are 1 and 0.1 microM for split and splitless injections, respectively. Blood concentrations of 2,3-butanediol in nonalcoholics are 0.5 +/- 0.3 (SD) microM for 2R,3R- and/or 2S,3S-2,3-butanediol and 0.8 +/- 0.4 microM for meso-2,3-butanediol (n = 9). Two hours after alcohol ingestion, blood levels had risen in eight of nine subjects to 1.2 +/- 0.7 microM for 2R,3R-/2S,3S-2,3-butanediol and to 1.2 +/- 0.6 microM for meso-2,3-butanediol. Baseline urinary excretion of 2,3-butanediol is 0.4 +/- 0.2 mumol/mmol creatinine for 2R,3R-/2S,3S-2,3-butanediol and 0.9 +/- 0.5 mumol/mmol creatinine for meso-2,3-butanediol.  相似文献   

3.
P Le Maréchal  C Froussios  R Azerad 《Biochimie》1986,68(10-11):1211-1215
(3R) and (3S) 3-deoxy-3-fluoro-7-phospho-D-arabino hept-2-ulosonic acids (3R and 3S-3F-DAHP) the 3-fluoro analogues of DAHP were synthesized from the corresponding 2-deoxy-2-fluoro hexose-6-phosphates. 3R- and 3S-3F-DAHP were tested as substrates for 3-dehydroquinate synthetase from E. coli. Determination of kinetic parameters showed that their apparent Km and Vm were in the same order of magnitude for these two compounds. Further conversion of 3R- and 3S-3F-DAHP into (6R) and (6S) 6-fluoro dehydroshikimate and (6R) and (6S) 6-fluoro shikimate, respectively, was investigated and results are discussed.  相似文献   

4.
A number of laboratory strains and clinical isolates of Escherichia coli utilized several aromatic acids as sole sources of carbon for growth. E. coli K-12 used separate reactions to convert 3-phenylpropionic and 3-(3-hydroxyphenyl)propionic acids into 3-(2,3-dihydroxyphenyl)propionic acid which, after meta-fission of the benzene nucleus, gave succinate, pyruvate, and acetaldehyde as products. Enzyme assays and respirometry showed that all enzymes of this branched pathway were inducible and that syntheses of enzymes required to convert the two initial growth substrates into 3-(2,3-dihydroxyphenyl)propionate are under separate control. E. coli K-12 also grew with 3-hydroxycinnamic acid as sole source of carbon; the ability of cells to oxidize cinnamic and 3-phenylpropionic acids, and hydroxylated derivatives, was investigated. The lactone of 4-hydroxy-2-ketovaleric acid was isolated from enzymatic reaction mixtures and its properties, including optical activity, were recorded.  相似文献   

5.
2,3-Diaminopropionate ammonia-lyase (DAPAL), which catalyzes alpha,beta-elimination of 2,3-diaminopropionate regardless of its stereochemistry, was purified from Salmonella typhimurium. We cloned the Escherichia coli ygeX gene encoding a putative DAPAL and purified the gene product to homogeneity. The protein obtained contained pyridoxal 5'-phosphate and was composed of two identical subunits with a calculated molecular weight of 43,327. It catalyzed the alpha,beta-elimination of both D- and L-2,3-diaminopropionate. The results confirmed that ygeX encoded DAPAL. The enzyme acted on D-serine, but its catalytic efficiency was only 0.5% that with D-2,3-diaminopropionate. The enzymologic properties of E. coli DAPAL resembled those of Salmonella DAPAL, except that L-serine, D-and L-beta-Cl-alanine were inert as substrates of the enzyme from E. coli. DAPAL had significant sequence similarity with the catalytic domain of L-threonine dehydratase, which is a member of the fold-type II group of pyridoxal phosphate enzymes, together with D-serine dehydratase and mammalian serine racemase.  相似文献   

6.
Dihydroxy and monohydroxy fatty acids in Legionella pneumophila   总被引:15,自引:1,他引:14       下载免费PDF全文
Five strains of Legionella pneumophila were examined for the presence of hydroxy fatty acid. The cellular distribution of the fatty acids was also determined, as was the variation of hydroxy acid production on five growth media. The strains tested all produced approximately 5 mol% of hydroxy fatty acid, most of which was found in the nonextractable, alkali-stable, acid-labile (wall-associated, amide-linked) fraction. Three major hydroxy acids were found, along with several minor components. The major hydroxy acids were analyzed by thin-layer chromatography, gas-liquid chromatography, mass spectrometry, and infrared spectrophotometry. These compounds were tentatively identified as 3-hydroxy-12-methyltridecanoate, 3-hydroxy-n-eicosanoate, and a novel dihydroxy acid, 2,3-dihydroxy-12-methyltridecanoate. The total amount of hydroxy acid produced, as well as the profile of the hydroxy acids, remained relatively unchanged with respect to strain and growth medium.  相似文献   

7.
Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation.  相似文献   

8.
Stereospecifically (3)H-labeled substrates are useful tools in studying the mechanism of hydrogen abstractions involved in the oxygenation of polyunsaturated fatty acids. Here, we describe modified methods for the synthesis of arachidonic acids labeled with a single chiral tritium on the methylene groups at carbons 10 or 13. The appropriate starting material is a ketooctadecanoic acid which is prepared from an unsaturated C18 fatty acid precursor or by total synthesis. The (3)H label is introduced by NaB(3)H(4) reduction and the resulting tritiated hydroxy fatty acid then is tosylated, separated into the enantiomers by chiral phase HPLC, and subsequently transformed into stearic acids. A variety of stereospecifically labeled unsaturated fatty acids are obtained using literature methods of microbial transformation with the fungus Saprolegnia parasitica. Two applications are described: (i) In incubations of [10S-(3)H]- and [10R-(3)H]arachidonic acids in human psoriatic scales we show that a 12R-lipoxygenase accounts not only for synthesis of the major product 12R-HETE, but it contributes also, through subsequent isomerization, to the minor amounts of 12S-HETE. (ii) The [10R-(3)H]- and [10S-(3)H]arachidonic acids were also used to demonstrate that prostaglandin ring formation by cyclooxygenases does not involve carbocation formation at C-10 of arachidonic acid as was hypothesized recently.  相似文献   

9.
The conjugation reactions of hydration and dehydrogenation catalyzed by the dehydratase and dehydrogenase activities of D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein (DBP) and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional protein (LBP) in the side chain degradation step of bile acid biosynthesis were investigated using chemically synthesized C27-bile acid CoA esters as substrates. The hydration catalyzed by DBP showed high diastereoselectivity for (24E)-3alpha,7alpha,12alpha-trihydroxy- and (24E)-3alpha,7alpha-dihydroxy-5beta-cholest-24-en-26-oyl CoA to give (24R,25R)-3alpha,7alpha,12alpha,24-tetrahydroxy- and (24R,25R)-3alpha,7alpha,24-trihydroxy-5beta-cholestan-26-oyl CoAs, respectively, and the dehydrogenation catalyzed by DBP also showed high stereospecificity for the above (24R,25R)-isomers to give 3alpha,7alpha,12alpha-trihydroxy- and 3alpha,7alpha-dihydroxy-24-oxo-5beta-cholestan-26-oyl CoAs, respectively. On the other hand, the dehydratase activity of LBP displayed a different diastereoselectivity producing the (24S,25S)-isomer, and dehydrogenase activity of LBP was stereospecific for the (24S,25R)-isomer to give the above 24-oxo-derivative. The hydration and dehydrogenation reactions catalyzed by DBP were effectively conjugated to convert (24E)-5beta-cholestenoyl CoA to 24-oxo-5beta-cholestanoyl CoA. However, the reactions catalyzed by LBP were not conjugated. These results indicate that DBP plays an important role in the biosynthesis of bile acid.  相似文献   

10.
Two new brassinosteroids, (22R,23R,24S)-22,23-dihydroxy-24-methyl-5alpha-cholest-2-en-6-one (secasterol) and (22R,23R,24S)-22,23-dihydroxy-2alpha,3alpha-epoxy-24-methyl-5alpha-cholest-6-one (2,3-diepisecasterone) have been identified together with a known 2,3-epoxybrassinosteroid, secasterone, in seedlings of Secale cereale. Deuterated secasterol, teasterone, and typhasterol, upon administration to rye seedlings, were incorporated into secasterone and 2,3-diepisecasterone, indicating a biosynthetic route via teasterone/typhasterol to secasterol to 2,3-epoxybrassinosteroids.  相似文献   

11.
J C Fr?lich 《Prostaglandins》1984,27(3):349-368
This statement from laboratories highly qualified in icosanoid analysis identifies the urgent need for the availability of the following compounds in labeled (deuterium and tritium) and unlabeled form: PGE2 PGF2 alpha PGD2 6-keto-PGF1 alpha Thromboxane B2 9 alpha,20-dihydroxy-11,15-dioxo-2,3- dinorprost -5-enoic acid 9 alpha-hydroxy-11,15-dioxo-2,3,18,19- tetranorprost -5-ene-1,20-dioic acid 15-keto-13,14-dihydro-PGE2 15-keto-13,14-dihydro-PGF2 alpha 5 alpha-7 alpha-dihydroxy-11- ketotetranorprosta -1,16-dioic acid 7 alpha-hydroxy-5,11-diketo- tetranorprosta -1,16-dioic acid 2,3 dinor-thromboxane B2 2,3 dinor-6-keto-PGF1 alpha 2,3 dinor-6,15-diketo 13,14 dihydro-20-carboxyl-PGF1 alpha 2,3 dinor-13,14-dihydro-6,15-diketo-PGF1 alpha LTB4 LTC4 LTD4 LTE4 LTF4 20-OH-LTB4 20-COOH-LTB4 5-HETE 12-HETE 15-HETE omega-OH-12-HETE 5S, 12S-di HETE 5S, 15S-di HETE HHT other hydroxylated polyunsaturated fatty acids and their epoxides.  相似文献   

12.
The nucleotide sequence of the todC1C2BADE genes which encode the first three enzymes in the catabolism of toluene by Pseudomonas putida F1 was determined. The genes encode the three components of the toluene dioxygenase enzyme system: reductaseTOL (todA), ferredoxinTOL (todB), and the two subunits of the terminal dioxygenase (todC1C2); (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase (todD); and 3-methylcatechol 2,3-dioxygenase (todE). Knowledge of the nucleotide sequence of the tod genes was used to construct clones of Escherichia coli JM109 that overproduce toluene dioxygenase (JM109(pDT-601]; toluene dioxygenase and (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase (JM109(pDTG602]; and toluene dioxygenase, (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase, and 3-methylcatechol 2,3-dioxygenase (JM109(pDTG603]. The overexpression of the tod-C1C2BADE gene products was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The three E. coli JM109 strains harboring the plasmids pDTG601, pDTG602, and pDTG603, after induction with isopropyl-beta-D-thiogalactopyranoside, oxidized toluene to (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene, 3-methylcatechol, and 2-hydroxy-6-oxo-2,4-heptadienoate, respectively. The tod-C1C2BAD genes show significant homology to the reported nucleotide sequence for benzene dioxygenase and cis-1,2-dihydroxycyclohexa-3,5-diene dehydrogenase from P. putida 136R-3 (Irie, S., Doi, S., Yorifuji, T., Takagi, M., and Yano, K. (1987) J. Bacteriol. 169, 5174-5179). In addition, significant homology was observed between the nucleotide sequences for the todDE genes and the sequences reported for cis-1,2-dihydroxy-6-phenylcyclohexa-3,5-diene dehydrogenase and 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Furukawa, K., Arimura, N., and Miyazaki, T. (1987) J. Bacteriol. 169, 427-429).  相似文献   

13.
Several analogues of N3-fumaramoyl-L-2,3-diaminopropanoic acid were synthesized and evaluated for inhibition of glucosamine-6-phosphate synthetase activity. The syntheses were accomplished by acylation reaction of N2-tert.-butoxycarbonyl-L-2,3-diaminopropanoic acid (Boc-A2pr) or N2-tert.-butoxycarbonyl-L-2,4-diaminobutanoic acid (Boc-A2-bu) with the N-succinimidoyl esters of several derivatives of alpha, beta-unsaturated acids 2a-d followed by deprotection of the Boc groups. The obtained compounds were tested for inhibition of glucosamine synthetase isolated from Salmonella typhimurium and Saccharomyces cerevisiae. The results indicated that among the synthesized compounds, N3-4-methoxyfumaroyl-L-2,3-diaminopropanoic acid (FMDP) was the most powerful inhibitor of glucosamine synthetase.  相似文献   

14.
Zhang GL  Wang CW  Li C 《Biotechnology letters》2012,34(8):1519-1523
The budC gene encoding the meso-2,3-BDH from Klebsiella pneumoniae XJ-Li was expressed in E. coli BL21 (DE3) pLys. Hypothetical amino acid sequence alignments revealed that the enzyme belongs to the short chain dehydrogenase/reductase family. After purification and refolding, the recombinant enzyme had activities of 218 U/mg for reduction of acetoin and 66 U/mg for oxidation of meso-2,3-butanediol. Highest activities were at pH 8.0 and 9.0 respectively. These are higher than other meso-2,3-butanediol dehydrogenases from K. pneumoniae. The low K (m) value (0.65 mM) for acetoin indicated that the enzyme can easily reduce acetoin to meso-2,3-butanediol. There were no significant activities towards 2R,3R-2,3-butanediol, 1,4-butanediol and 2S,3S-2,3-butanediol, suggesting that the enzyme has a high stereospecificity for the meso-dihydric alcohol.  相似文献   

15.
Inhibition of rabbit lung angiotensin I-converting enzyme was studied with two inhibitors that combined tricyclic mimics of a substrate C-terminal dipeptide recognition unit with a 4-phenylbutanoic acid fragment. The overall inhibition constant for [4S-[4 alpha, 7 alpha(R*),12b beta]]-7-[S-(1-carboxy-3-phenylpropyl) amino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a] [2] benzazepine-4-carboxylic acid (MDL 27,088) was approximately 4 pM, whereas that for [4R-[4 alpha, 7 alpha(S*), 12b beta]]-7-[S-(1-carboxy-3-phenylpropyl)amino]-3,4,6,7,8, 12b-hexahydro-6-oxo-1H-[1,4]thiazino[3,4-a] [2]benzazepine-4-carboxylic acid (MDL 27,788) was estimated to be 46 pM. The formation of an initial complex of target enzyme and MDL 27,088 and its slower isomerization to a second complex were characterized kinetically. Both compounds appear to be among the most potent inhibitors known for this enzyme.  相似文献   

16.
Summary We report the solid-phase synthesis and receptor-binding properties of eleven oxytocin analogs (Mpa-Xxx-Ile-Gln-Asn-Cys-Sar-Arg-Gly-NH2) containing non-coded amino acids in position 2: D-α- and L-α-(2-indanyl)glycine, R,S-6-methoxy-2-aminotetralin-2-carboxylic acid, D- and L-pentafluorophenylalanine, D,L-2,4-dimethylphenylalanine, D,L-2,4,6-trimethylphenylalanine, R,R- and S,S-1,2,3,4-tetrahydro-1-methyl-β-carboline-3-carboxylic acid and R- and S-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid. Some of these amino acid analogs (2-indanylglycine and D-pentafluorophenylalanine) were earlier successfully applied for the synthesis of potent bradykinin antagonists [1, 2]. Their receptor bindings were tested on isolated guinea-pig uterus, rat liver and rat kidney inner medulla plasma membranes. The extent of binding of the peptides to the oxytocin receptor was in several cases was even higher than that of the parent hormone (oxytocin). However, the real pharmacological value of these analogs can be evaluated only afterin vivo measurements of their inhibition of uterine motor activity.  相似文献   

17.
8-Hydroxyoctadeca-9Z,12Z-dienoic acid (8-HODE) and 10-hydroxyoctadeca-8E,12Z-octadecadienoic acid (10-HODE) are produced by fungi, e.g., 8R-HODE by Gaeumannomyces graminis (take-all of wheat) and Aspergillus nidulans, 10S-HODE by Lentinula edodes, and 10R-HODE by Epichloe typhina. Racemic [8-(2)H]8-HODE and [10-(2)H]10-HODE were prepared by oxidation of 8- and 10-HODE to keto fatty acids by Dess-Martin periodinane followed by reduction to hydroxy fatty acids with NaB(2)H(4). The hydroxy fatty acids were analyzed by chiral phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with 8R-HODE and 10S-HODE as standards. 8R-HODE eluted after 8S-HODE on silica with cellulose tribenzoate (Chiralcel OB-H), and 10S-HODE eluted before 10R-HODE on silica with an aromatic chiral selector (Reprosil Chiral-NR). 5S,8R-Dihydroxyoctadeca-9Z,12Z-dienoic acid (5S,8R-DiHODE) is formed from 18:2n-6 by A. nidulans and 8R,11S-dihydroxyoctadeca-9Z,12Z-dienoic acid (8R,11S-DiHODE) by Agaricus bisporus. 8R-Hydroperoxylinoleic acid (8R-HPODE) can be transformed to 5S,8R-DiHODE and 8R,11-DiHODE by Aspergillus spp., and 8R,13-dihydroxy-9Z,11E-dienoic acid (8R,13-DiHODE) can also be detected. We prepared racemic [5,8-(2)H(2)]5,8- and [8,11-(2)H(2)]8,11-DiHODE by oxidation and reduction as above and 8R,13S- and 8R,13R-DiHODE by oxidation of 8R-HODE by S and R lipoxygenases. The diastereoisomers were separated and identified by normal phase HPLC-MS/MS analysis. We used the methods for steric analysis of fungal oxylipins. Aspergillus spp. produced 8R-HODE (>95% R), 10R-HODE (>70% R), and 5S,8R- and 8R,11S-DiHODE with high stereoselectivity (>95%), whereas 8R,13-DiHODE was likely formed by nonenzymatic hydrolysis of 8R,11S-DiHODE.  相似文献   

18.
The product of the firA (ssc) gene is essential for growth and for the integrity of the outer membrane of Escherichia coli and Salmonella typhimurium. Recently, Kelly and coworkers (T. M. Kelly, S. A. Stachula, C. R. H. Raetz, and M. S. Anderson, J. Biol. Chem., 268:19866-19874, 1993) identified firA as the gene encoding UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase, the third step in lipid A biosynthesis. We studied the effects of six different mutations in firA on lipopolysaccharide synthesis. All of the firA mutants of both E. coli and S. typhimurium examined had a decreased lipopolysaccharide synthesis rate. E. coli and S. typhimurium strains defective in firA produced a lipid A that contains a seventh fatty acid, a hexadecanoic acid, when grown at the nonpermissive temperature. Analysis of the enzymatic activity of other enzymes involved in lipid A biosynthesis revealed that the firA mutations pleiotropically affect lipopolysaccharide biosynthesis. In addition to that of UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase, the enzymatic activity of the lipid A 4' kinase (the sixth step of lipid A biosynthesis) was decreased in strains with each of the firA mutations examined. However, overproduction of FirA was not accompanied by overexpression of the lipid A 4' kinase.  相似文献   

19.
The N-terminal pentapeptide of the lipoprotein from the outer membrane of Escherichia coli was obtained by coupling S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteine to O-tert-butylseryl-O-tert-butyl-seryl-asparaginyl-alanine tert-butyl ester followed by deprotection with trifluoroacetic acid. The tetrapeptide was built up from alanine tert-butyl ester with N-9-fluorenylmethyloxycarbonyl protected amino acids. S-[2,3-Bis(palmitoyloxy)propyl]-N-palmitoylcysteine was obtained from N,N'-dipalmitoylcystine di-tert-butyl ester via reduction to the thiol, and S-alkylation with racemic 3-bromo-1,2-propanediol followed by esterification with palmitic acid in the presence of dicyclohexylcarbodiimide/dimethylaminopyridine and deprotection with trifluoroacetic acid. The compounds were characterized unequivocally by 13C-NMR and mass spectra. The diastereomers of S-[2,3-bis(palmitoyloxy)propyl]-N-palmitoylcysteine tert-butyl ester with opposite configuration at the propyl-C-2 atom could be separated on a silica-gel column.  相似文献   

20.
Excretion of alpha-keto acids by clinical isolates and laboratory strains of Salmonella typhimurium was determined by high-performance liquid chromatography analysis of culture supernatants. The levels of excretion increased markedly with increasing iron stress imposed by the presence of alpha,alpha'-dipyridyl or conalbumin in the medium. The major product was pyruvic acid, but significant concentrations of alpha-ketoglutaric acid, alpha-ketoisovaleric acid, and alpha-ketoisocaproic acid were also observed. Maximal excretion occurred at iron stress levels that initially inhibited bacterial growth; the concentration of alpha,alpha'-dipyridyl at which this was observed differed between strains depending on their ability to secrete and utilize siderophores, suggesting that the intracellular iron status was important in determining alpha-keto acid excretion. However, prolonged incubation of the siderophore-deficient S. typhimurium strain enb-7 under conditions of high iron stress resulted in significant delayed bacterial growth, promoted by tonB-dependent uptake of iron complexed with the high accumulated levels of pyruvic acid and other alpha-keto acids. Strain RB181, a fur derivative of enb-7, excreted massive amounts of alpha-keto acids into the culture medium even in the absence of any iron chelators (the concentration of pyruvic acid, for example, was >25 mM). Moreover, RB181 was able to grow and excrete alpha-keto acids in the presence of alpha,alpha'-dipyridyl at concentrations threefold greater than that which inhibited the growth of enb-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号