首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D K Strickland  B G Hudson 《Biochemistry》1978,17(16):3411-3418
The structure of rabbit transferrin was investigated with regard to number, size, and composition of the heteropolysaccharide units and their relative location on the polypeptide chain. The composition and molecular weight of the Pronase glycopeptides revealed that rabbit transferrin contains two heteropolysaccharide units, each composed of 2 sialic acid residues, 2 galactose residues, 3 mannose residues, and 4-N-acetylglucosamine residues. The composition and molecular weight of the tryptic glycopeptides further substantiated the existence of two identical heteropolysaccharide units and revealed that both units have identical amino acid residues in the immediate vicinity of the carbohydrate attachment sites to the polypeptide chain, suggesting a sequence homology surrounding the two glycosylation sites. Characterization of the cyanogen bromide fragments from rabbit transferrin indicated that both heteropolysaccharide units are located within a single polypeptide fragment representing approximately one-third of the molecule.  相似文献   

2.
The primary structure of p97 (melanotransferrin) has been compared with other members of the transferrin superfamily. A molecular structure of p97 has been modelled based on the crystal structure of diferric rabbit serum transferrin. The most significant amino acid substitutions in p97 are almost exclusively limited to only two regions; the C-lobe iron-binding cleft and the interlobe contact region. The latter includes within the N-terminal lobe a Zn-binding consensus sequence found in metallopeptidases, and in the C-terminal lobe a glutamic acid residue (Glu-394) capable of completing a potential thermolysin-like Zn-binding site. Thus, p97 may have a Zn-binding potential, unique amongst the transferrin superfamily.  相似文献   

3.
Liu R  Guan JQ  Zak O  Aisen P  Chance MR 《Biochemistry》2003,42(43):12447-12454
Human transferrin, a bilobal protein, with each lobe bearing a single iron-binding site, functions to transport iron into cells. While the N-terminal lobe alone does not measurably bind cellular transferrin receptors or serve as an iron donor for cells, the C-lobe is capable of both functions. We used hydroxyl radical-mediated protein footprinting and mass spectrometry to reveal the conformational changes that occur upon complex formation for the human transferrin C-lobe (residues 334-679) bound to the ectodomain of human transferrin receptor 1 (residues 121-760). Oxidation rates for proteolytic peptides in the C-lobe, the receptor, and their complex have been measured by mass spectrometry; upon formation of the complex, a dramatic decrease in modification rates, indicating protection of specific side chain groups, can be seen in C-lobe sequences corresponding to residues 381-401, 415-433, and 457-470. Peptide sequences experiencing modification rate decreases in the transferrin receptor upon C-lobe binding include residues 232-240, 365-371, 496-508, 580 and 581, 614-623, 634-646, 647-681, and 733-760. In addition, several peptides in the receptor exhibit enhancements in the rate of modification consistent with allosteric effects of complex formation. Using tandem mass spectrometry, the sites of modification with altered reactivity in the complex include Met382, Met389, Trp460, Met464, and Phe427 in the C-lobe and Tyr503, Pro581, Tyr611, Leu619, Met635, Phe650, Trp740, Trp754, and Phe760 within the transferrin receptor. Using available genetic, biochemical, and structural data, we confirm that the conserved RGD sequence (residues 646-648) in the helical domain of the transferrin receptor, including residues from Leu619 to Phe650, is a primary binding site for the transferrin C-lobe.  相似文献   

4.
1. The electrophoretically fast (F) and slow (S) fragments obtained by tryptic cleavage of bovine iron-saturated transferrin differed in carbohydrate content and peptide 'maps'. 2. A fragment capable of binding one Fe3+ ion per molecule was isolated after brief tryptic digestion of bovine apotransferrin and shown closely to resemble the S fragment obtained from the iron-saturated protein. 3. Fragments F and S are probably derived from the N- and C-terminal halves of the transferrin molecule respectively. 4. Bovine transferrin could donate iron to rabbit reticulocytes, but the monoferric fragments possessed little iron-donating ability.  相似文献   

5.
Difference ultraviolet spectroscopy has been used to monitor the binding of a series of phosphonate ligands to human apotransferrin. The ligands consist of pyrophosphate as well as the phosphonic acids (aminomethyl)phosphonic acid (AMPA), (hydroxymethyl)phosphonic acid (HMP), (phosphonomethyl)-iminodiacetic acid (PIDA), N,N-bis(phosphonomethyl)glycine (DPG), and nitrilotris(methylenephosphonic acid) (NTP). Equilibrium constants have been measured for the sequential binding of two ligands per molecule of apotransferrin. In addition, site-specific equilibrium constants have been measured for the binding of AMPA, HMP, and PIDA to the vacant binding site of both forms of monoferric transferrin. Since titrations of diferric transferrin produce no difference UV spectrum, it is proposed that the primary binding site for phosphonic acids includes the protein groups that bind the synergistic bicarbonate anion that is required for formation of a stable ferric transferrin complex. It is further proposed that those ligands with two phosphonate groups can simultaneously bind to cationic amino acid side chains that extend into the cleft between the two domains of each lobe of transferrin. From an inspection of the ferric transferrin crystal structure, the most likely anion binding residues in the cleft are Arg-632 and Lys-534 in the C-terminal lobe and Lys-206 and Lys-296 in the N-terminal lobe.  相似文献   

6.
Drosophila melanogaster transferrin cDNA was cloned from an ovarian cDNA library by using a PCR fragment amplified by two primers designed from other dipteran transferrin sequences. The clone (2035 bp) encodes a protein of 641 amino acids containing a signal peptide of 29 amino acids. Like other insect transferrins, Drosophila transferrin appears to have a functional iron-binding site only in the N-terminal lobe. The C-terminal lobe lacks iron-binding residues found in other transferrins, and has large deletions which make it much smaller than functional C-terminal lobes in other transferrins. In-situ hybridization using a digoxigenin labeled transferrin cDNA probe revealed that the gene is located at position 17B1-2 on the X chromosome. Northern blot analysis showed that transferrin mRNA was present in the larval, pupal and adult stages, but was not detectable in the embryo. Iron supplementation of the diet resulted in lower levels of transferrin mRNA. When adult flies were inoculated with bacteria (Escherichia coli), transferrin mRNA synthesis was markedly increased relative to controls.  相似文献   

7.
Each homologous lobe of human serum transferrin (hTF) has one Fe(3+) ion bound by an aspartic acid, a histidine, two tyrosine residues, and two oxygens from the synergistic anion, carbonate. Extensive characterization of these ligands in the N-terminal lobe has been carried out. Despite sharing the same set of ligands, there is a substantial amount of evidence that the N- and C-lobes are inequivalent. Studies of full-length hTF have shown that iron release from each lobe is kinetically distinguishable. To simplify the assessment of mutations in the C-lobe, we have created mutant hTF molecules in which the N-lobe binds iron with high affinity or not at all. Mutations targeting the C-lobe liganding residues have been introduced into these hTF constructs. UV-visible spectral, kinetic, and EPR studies have been undertaken to assess the effects of each mutation and to allow direct comparison to the N-lobe. As found for the N-lobe, the presence of Y517 in the C-lobe (equivalent to Y188 in the N-lobe) is absolutely essential for the binding of iron. Unlike the N-lobe, however, mutation of Y426 (equivalent to Y95) does not produce a stable complex with iron. For the mutants that retain the ability to bind iron (D392S and H585A), the rates of release are considerably slower than those measured for equivalent mutations in the N-lobe at both pH 7.4 and pH 5.6. Equilibrium binding experiments with HeLa S(3) cells indicate that recombinant hTF, in which Y426 or H585 is mutated, favor a closed or nearly closed conformation while those with mutations of the D392 or Y517 ligands appear to promote an open conformation. The differences in the effects of mutating the liganding residues in the two lobes and the subtle indications of cooperativity between lobes point to the importance of the transferrin receptor in effecting iron release from the C-lobe. Significantly, the equilibrium binding experiments also indicate that, regardless of which lobe contains the iron, the free energy of binding is equivalent and not additive; each monoferric hTF has a free energy of binding that is 82% of diferric hTF.  相似文献   

8.
Human serum transferrin is an essential bilobal protein that transports iron in the circulation for delivery to iron-requiring cells. Obtaining the C-terminal lobe of human transferrin in verified native conformation has been problematic, possibly because its 11 disulfide bonds lead to misfolding when the lobe is expressed without its accompanying N-lobe. A recently reported method for preparing the C-lobe free of extraneous residues, with normal iron-binding properties and capable of delivering iron to cells, makes use of a Factor Xa cleavage site inserted into the interlobal connecting strand of the full-length protein. An inefficient step in this method requires the use of ConA chromatography to separate the cleaved lobes from each other, since only the C-lobe is glycosylated. Inserting a 6-His sequence near the start of the N-lobe enhances recovery of the recombinant transferrin from other proteins in the culture medium of the BHK21 cells expressing the mutant transferrin. The new procedure is more economical in time and effort than its predecessor, and offers the additional advantage of isolating C-lobe expressed with or without its glycan chains.  相似文献   

9.
Zak O  Aisen P 《Biochemistry》2002,41(5):1647-1653
Eukaryotic transferrins comprise a class of bilobal iron-binding proteins in which each lobe carries a single binding site. Although expression of full-length transferrins and their N-terminal lobes, in wild-type and mutated forms, has been successfully accomplished by several laboratories, expression of C-lobes has been much less satisfactory. A possible explanation of the difficulty is that proper folding of the C-lobe, with its 11 disulfide bonds, depends on prior synthesis and proper folding of the N-lobe. We have therefore developed a new strategy, introducing a specific factor Xa cleavage site in the interlobe-connecting strand to permit separation of the lobes after expression of the full-length protein. The resulting protein was expressed in satisfactory yield, >20 mg/L, and could be easily and completely cleaved to yield two distinguishable fragments representing N- and C-lobes, respectively. Retaining the glycosylation sites, found only in the C-lobe, made it possible to separate the fragments from each other by ConA affinity chromatography. The isolated C-lobe so obtained displayed spectroscopic and kinetic features of the C-lobe in native transferrin and was competent as an iron donor for K562 cells to which it bound in saturable fashion inhibitable by native diferric transferrin. Since the N-lobe by itself will neither bind nor donate iron to cells, the primary receptor-recognition site of transferrin resides in its C-lobe.  相似文献   

10.
Transferrin was isolated from plasma of the ascidian Halocynthia roretzi by ion-exchange chromatography. The molecular weight of the plasma transferrin was determined to be 52K by SDS-polyacrylamide gel electrophoresis and gel filtration. Ascidian plasma transferrin was found to bind one mole of iron ion per mole of protein. The reductive S-pyridylethylated transferrin was subjected to Edman degradation analysis for determination of the N-terminal amino acid sequence, and it was also subjected to proteolytic fragmentation to yield peptide fragments, whose amino acid sequences were determined by Edman degradation analysis. Using the above amino acid sequences, a cDNA clone (1880 base pairs) encoding a protein of 372 amino acids containing a signal peptide of 21 amino acids was isolated from an H. roretzi hepatopancreas cDNA library. The reduced amino acid sequence contains the same sequences of the peptide fragments. A comparison of the amino acid sequence of ascidian transferrin with those of other members of the transferrin family revealed that the ascidian transferrin is composed of only the N-terminal lobe of two-lobed vertebrate transferrins. Thus, a one-lobed transferrin is present in the ascidian H. roretzi.  相似文献   

11.
The N-terminal lobe of recombinant human serum transferrin (residues 1 to 337) has been crystallized in a form suitable for high-resolution three-dimensional X-ray crystallographic analyses. Crystals are of the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions of a = 44.9 A, b = 57.0 A and c = 135.9 A, and diffract to beyond 2 A resolution. Further studies show that isomorphous crystals of specifically designed mutants of this protein can also be grown. Structural studies of both recombinant and mutant protein forms will provide a basis for understanding the mechanism by which human serum transferrin functions.  相似文献   

12.
Purified ovine pancreatic lipase has been subjected to a limited protein sequence analysis. Cyanogen bromide fragments from the molecule were isolated and characterised to enable the structure of the molecule to be mapped. Some tryptic peptides were also isolated, sequenced, and aligned by homology to lipase sequences from other species. A total of 172 residues out of a possible 456 have been assigned, including 45 residues at the N-terminus and 10 residues at the C-terminus of the protein. A polyclonal antibody has been prepared to ovine lipase which has been characterised by Ouchterlony immunodiffusion and by Western blotting experiments. These experiments showed that the ovine pancreatic lipase was immunologically different from the ovine hepatic and lingual lipase, whereas there was considerable immunological similarity amongst ovine, bovine and rabbit pancreatic lipase, but less with porcine pancreatic lipase.  相似文献   

13.
Two iron-binding fragments of Mr 36 000 and 33 000 corresponding to the N-terminal domain of rabbit serum transferrin were prepared. One iron-binding fragment of Mr 39 000 corresponding to the C-terminal domain was prepared. The N-terminal amino acid sequence of rabbit serum transferrin is: Val-Thr-Glu-Lys-Thr-Val-Asn-Trp-?-Ala-Val-Ser. One glycan unit is presented in rabbit serum transferrin and it is located in the C-terminal domain.  相似文献   

14.
A relatively homogeneous rabbit heavy chain was cleaved by CNBr. Fragment C-1 (the N-terminal half of the heavy chain) was isolated. Reduction and alkylation of C-1 liberated three fragments and partial sequence analysis of these isolated fragments showed that C-1 had been split on the carboxyl-side of Met 84. Similar results were obtained with another anti-hapten antibody preparation in which tyrosyl residues in the combining sites had been labeled. The labeled tyrosyl residues were found in the fragment representing residues 85–253. Since the constant region begins at about residue 120 and the sequences of the tyrosyl peptides from the combining sites are not present in published constant region sequences, these peptides appear to be derived from a variable region between residues 85 and 120.  相似文献   

15.
Diferric transferrin was modified using aquopentaammine ruthenium(II), a reagent for surface-accessible uncoordinated histidines. Introduction of the cationic Ru(III) (NH3)3 + 5 group on the imidazole of only 5.5 of the 17 uncoordinated histidines enhances the rates of pyrophosphate-assisted iron removal from the N-terminal and C-terminal binding sites by 16- and 2-fold, respectively. This differential effect on the kinetics of the two sites may partially explain why in the native protein the N-terminal site is more labile than the C-terminal site in acidic solutions where histidine residues become positively charged through protonation. The distance between the metal site and nearby uncoordinated histidines was estimated from fluorescence energy transfer measurements using Tb (III) as the donor and pentaammine ruthenium(III)-labeled imidazole of histidine as the acceptor chromophore. A Tsou Chen-Lu statistical analysis of the fluorescence quenching data suggest that two residues in each lobe of the protein are involved in quenching the fluorescence. By using estimates for the index of refraction and the quantum yield and assuming the energy transfer follows parallel first-order kinetics, an upper limit for the donor-acceptor distance of about 1.4 nm was obtained, assuming two uncoordinated histidine residues equidistant from the metal. His-207 and His-242 in the N-terminal lobe of transferrin and His-535 and His-577 in the C-terminal lobe are within this distance, based on information from the lactoferrin crystal structure. It is postulated that His-207 in the N-terminal lobe and His-535 in the C-terminal lobe are the uncoordinated residues that, when protonated or modified with Ru(III) (NH3)3 + 5, lead to accelerated loss of iron from the two binding sites of the protein.  相似文献   

16.
Lactoferrin is a monomeric glycoprotein with a molecular mass of approximately 80 kDa. The three-dimensional structure of mare diferric lactoferrin (mlf) has been determined at 2.6 A resolution. The protein crystallizes in the space group P 212121with a=85.2 A, b=99.5 A, c=103.1 A with a solvent content of 55 % (v/v). The structure was solved by the molecular replacement method using human diferric lactoferrin as the model. The structure has been refined using XPLOR to a final R -factor of 0.194 for all data in the 15-2.6 A resolution range. The amino acid sequence of mlf was determined using a cDNA method. The final refined model comprises 5281 protein atoms, 2 Fe3+, 2 CO32-and 112 water molecules. The overall folding of mlf is similar to that of other proteins of the transferrin family. The protein folds into two globular lobes, N and C. The lobes are further divided into two domains, N1 and N2, and C1 and C2. The iron-binding cleft is situated between the domains in each lobe. The N lobe appears to be well ordered and is more stable than the C lobe in mlf unlike in other lactoferrins, where the C lobe is the more stable. The opening of the binding cleft in the N lobe of mlf is narrower than those in other proteins of the transferrin family. This is very unusual and is found only in mare lactoferrin. Apart from certain hydrophobic interactions at the mouth of the cleft, one salt-bridge (Lys301 . . . . . . . . Glu216) crosses between the two walls of the cleft. The two lobes are connected covalently by a three-turn alpha-helix involving residues 334-344. The N lobe displays a highly ordered structure with appreciably low temperature factors. The iron coordination is more symmetrical in the N lobe than in the C lobe. There are only 16 intermolecular hydrogen bonds in the structure of mlf.  相似文献   

17.
Zak O  Aisen P 《Biochemistry》2003,42(42):12330-12334
Human transferrin, like other members of the transferrin class of iron-binding proteins, is a bilobal structure, the product of duplication and fusion of an ancestral gene during the course of biochemical evolution. Although the two lobes exhibit 45% sequence identity and identical ligand structures of their iron-binding sites (one in each lobe), they differ in their iron-binding properties and their responsiveness to complex formation with the transferrin receptor. A variety of interlobe interactions modulating these iron-binding functions has been described. We have now studied the kinetics of iron release to pyrophosphate from the isolated recombinant C-lobe and from that lobe in the intact protein, each free and bound to receptor. The striking finding is that the rates of iron release at the pH of the endosome to which transferrin is internalized by the iron-dependent cell are similar in the free proteins but 18 times faster from full-length monoferric transferrin selectively loaded with iron in the C-lobe than from isolated C-lobe when each is complexed to the receptor. The possibility that the faster release in the receptor complex of the full-length protein at endosomal pH contributes to the evolutionary advantage of the bilobal structure is considered.  相似文献   

18.
Molecular structure of serum transferrin at 3.3-A resolution   总被引:10,自引:0,他引:10  
Serum transferrin is a metal-binding glycoprotein, molecular weight ca. 80,000, whose primary function is the transport of iron in the plasma of vertebrates. The X-ray crystallographic structure of diferric rabbit serum transferrin has been determined to a resolution of 3.3 A. The molecule has a beta alpha structure of similar topology to human lactoferrin and is composed of two homologous lobes that each bind a single ferric ion. Each lobe is further divided into two dissimilar domains, and the iron-binding site is located within the interdomain cleft. The iron is bound by two tyrosines, a histidine, and an aspartic acid residue. The location of the 19 disulfide bridges is described, and their possible structural roles are discussed in relation to the transferrin family of proteins. Mapping of the intron/exon splice junctions onto the molecule provides some topological evidence in support of the putative secondary role for transferrin in stimulating cell proliferation.  相似文献   

19.
A J Jeffreys  R A Flavell 《Cell》1977,12(4):1097-1108
We have used the rabbit β-globin DNA plasmid PβG1 (Maniatis et al., 1976) labeled with 32P as a filter hybridization probe for DNA fragments containing the β-globin gene in restriction endonuclease digests of rabbit liver DNA. The β-globin DNA fragments we detect appear to contain the gene, present in PβG1 DNA, which codes for adult rabbit β-globin. These fragments have been ordered into a physical map of cleavage sites within and neighboring the structural gene in the rabbit genome (Jeffreys and Flavell, 1977). A detailed analysis of β-globin DNA fragments produced by cleavage with restriction endonucleases which are known to cut the β-globin gene has now shown that the β-globin structural gene is not contiguous in rabbit liver DNA, but is interrupted by a 600 base pair DNA segment inserted somewhere within the coding sequence for amino acid residues 101–120 of the 146 residue β-globin chain. Otherwise, the map of cleavage sites within the gene is co-linear with that deduced from the sequence of rabbit β-globin messenger RNA. Preliminary analysis indicates that this insert is also present in the β-globin gene in rabbit brain, kidney, spleen, bone marrow and sperm, and in erythroid cells isolated from the marrow of an anemic rabbit. The insert appears, therefore, to be a general property of the rabbit β-globin gene, even in tissues in which this gene is active, which suggests that the insert is not involved in inactivating the gene in nonerythroid tissues.  相似文献   

20.
A soluble tryptic fragment of the human transferrin receptor (residues 121 to 760) has been crystallized from 2.8 M-KCl (pH 6.2) and polyethylene glycol 8000. This fragment retains the transferrin-binding activity of intact transferrin receptor. Although the trypsin treatment removes the intermolecular disulfide bonds, the receptor fragment is dimeric both under physiological conditions and at the high salt concentrations used for crystallization. The receptor fragment crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 105.5 A, b = 224.5 A, c = 363.5 A. The crystals are extremely radiation sensitive. Their diffraction extends to 3.8 A, and there is some diffuse scatter with helical characteristics. Analysis of these diffraction patterns indicates that the transferrin receptor fragments are arranged in continuous 8-fold symmetric helical columns parallel to the c axis, with a total of 32 receptor fragment monomers in the unit cell. A structure determination is in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号