首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The fin whale Balaenoptera physalus (L. 1758) in the Mediterranean Sea   总被引:1,自引:1,他引:0  
1. The ecology and status of fin whales Balaenoptera physalus in the Mediterranean Sea is reviewed. The species’ presence, morphology, distribution, movements, population structure, ecology and behaviour in this semi‐enclosed marine region are summarized, and the review is complemented with original, previously unpublished data. 2. Although the total size of the fin whale population in the Mediterranean is unknown, an estimate for a portion of the western basin, where most of the whales are known to live, was approximately 3500 individuals. High whale densities, comparable to those found in rich oceanic habitats, were found in well‐defined areas of high productivity. Most whales concentrate in the Ligurian‐Corsican‐Provençal Basin, where their presence is particularly noticeable during summer; however, neither their movement patterns throughout the region nor their seasonal cycle are clear. 3. Based on genetic studies, fin whales from the Mediterranean Sea are distinct from North Atlantic conspecifics, and may constitute a resident population, separate from those of the North Atlantic, despite the species’ historical presence in the Strait of Gibraltar. Fin whales are known to calve in the Mediterranean, with births peaking in November but occurring at lower rates throughout the year. They feed primarily on krill Meganyctiphanes norvegica which they capture by diving to depths in excess of 470 m. It is suggested that the extensive vertical migratory behaviour of its main prey may have influenced the social ecology of this population. 4. Known causes of mortality and threats, including collisions with vessels, entanglement in fishing gear, deliberate killing, disturbance, pollution and disease, are listed and discussed in view of the implementation of appropriate conservation measures to ensure the species’ survival in the region.  相似文献   

2.
3.
In order to help develop hypotheses of connectivity among North Pacific fin whales, we examine recordings from 10 regions collected in the spring and fall. We develop a Random Forest model to classify fin whale note types that avoids manual note classification errors. We also present a method that objectively quantifies the note and pattern composition of recordings. We find that fin whale recordings near Hawaii have distinctive patterns, similar to those found in other regions in the central North Pacific, suggesting potential migration pathways. Our results are consistent with previous studies that suggest there may be two different populations utilizing the Chukchi Sea and central Aleutians in the fall and mix to some degree in the southern Bering Sea. Conversely, we found little difference between spring and fall recordings in the eastern Gulf of Alaska, suggesting some residency of whales in this region. This is likely due to fine scale similarities of calls among the inshore regions of British Columbia, while offshore areas are being utilized by whales traveling from various distant areas. This study shows how our novel approach to characterize recordings is an objective and informative way to standardize spatial and temporal comparisons of fin whale recordings.  相似文献   

4.
Satellite tracking of whales was the aim of the ARGOCET program in the western Mediterranean Sea. With the tracking technology and the development of telemetry, we can study large mammals under natural conditions. In 1991, a satellite tracking during 42 days on a fin whale (Balaenoptera physalus) was obtained. The Argos system allowed us to know the location of this tagged fin whale 263 times. In this study, we can distinguish two kinds of movements: linear segments and tortuous segments with loops drawn in a clockwise direction. Such loops may be superficial oscillations of inertia due to the inertia of the water mass combined with earth's rotation. With this trial study, which is the best we have obtained, we can estimate the fractal dimension d of this trajectory at different observation scales. These d values seem to be scale-independent, so the fin whale path is fractal-like or scale-independent. Fractal dimension, which is a scale-independent measure, summarizes interactions between an organism and its ecosystem and depends on the heterogeneity of the whale's environment (exogeneous factors) and the whale's ability to perceive it (endogeneous factors). For the fin whale trajectory we calculated d = 1.03 +/–0.01 with the divider method. The aggregated distribution of available resources for the fin whale in the western Mediterranean Sea can explain this result close to 1. The heterogeneity of this food resources is not a `measured heterogeneity' but is a `functional heterogeneity'. The low fractal dimension also points to the low probability that the tagged fin whale and the zooplankton aggregates will meet in the western Mediterranean Sea so the fin whale must cover long straight lines from one patch of available zooplankton to another.  相似文献   

5.
Samples were collected from 407 fin whales, Balaenoptera physalus , at four North Atlantic and one Mediterranean Sea summer feeding area as well as the Sea of Cortez in the Pacific Ocean. For each sample, the sex, the sequence of the first 288 nucleotides of the mitochondrial (mt) control region and the genotype at six microsatellite loci were determined. A significant degree of divergence was detected at all nuclear and mt loci between North Atlantic/Mediterranean Sea and the Sea of Cortez. However, the divergence time estimated from the mt sequences was substantially lower than the time elapsed since the rise of the Panama Isthmus, suggesting occasional gene flow between the North Pacific and North Atlantic ocean after the separation of the two oceans. Within the North Atlantic and Mediterranean Sea, significant levels of heterogeneity were observed in the mtDNA between the Mediterranean Sea, the eastern (Spain) and the western (the Gulf of Maine and the Gulf of St Lawrence) North Atlantic. Samples collected off West Greenland and Iceland could not be unequivocally assigned to either of the two areas. The homogeneity tests performed using the nuclear data revealed significant levels of divergence only between the Mediterranean Sea and the Gulf of St Lawrence or West Greenland. In conclusion, our results suggest the existence of several recently diverged populations in the North Atlantic and Mediterranean Sea, possibly with some limited gene flow between adjacent populations, a population structure which is consistent with earlier population models proposed by Kellogg, Ingebrigtsen, and Sergeant.  相似文献   

6.
7.
The mechanisms by which phenotypic and genetic divergence may occur among sympatric, conspecific populations have been widely discussed but are still not well understood. Possible mechanisms include assortative mating based on morphology or variation in the reproductive behaviour of phenotypes, and both have been suggested to be relevant to the differentiation of salmonid populations in post-glacial lakes. Here, we studied Arctic charr (Salvelinus alpinus) in Windermere, where putative populations are defined by spatial and temporal variation in spawning. Genetic differentiation was assessed based on nine microsatellite loci, and phenotypic variation was assessed from morphometric characters. We test hypotheses about the relative role of morphology, spawning season and spawning habitat in the evolution of genetic divergence among these populations. Distinct from other lake systems, we find that both morphological and genetic differentiation are restricted primarily to one of two interconnecting basins, that genetic and morphological differentiation are decoupled in this lake and that both phenotype and environment have changed over the last 20 years. The implication is that breeding habitat plays a primary role in isolating populations that differentiate by drift and that phenotypically plastic changes, potentially related to foraging specializations, have either become secondarily decoupled from the genetically defined populations or were never fundamental in driving the evolution of genetic diversity in the Windermere system.  相似文献   

8.
Adaptive diversification is driven by selection in ecologically different environments. In absence of geographical barriers to dispersal, this adaptive divergence (AD) may be constrained by gene flow (GF). And yet the reverse may also be true, with AD constraining GF (i.e. 'ecological speciation'). Both of these causal effects have frequently been inferred from the presence of negative correlations between AD and GF in nature - yet the bi-directional causality warrants caution in such inferences. We discuss how the ability of correlative studies to infer causation might be improved through the simultaneous measurement of multiple ecological and evolutionary variables. On the one hand, inferences about the causal role of GF can be made by examining correlations between AD and the potential for dispersal. On the other hand, inferences about the causal role of AD can be made by examining correlations between GF and environmental differences. Experimental manipulations of dispersal and environmental differences are a particularly promising approach for inferring causation. At present, the best studies find strong evidence that GF constrains AD and some studies also find the reverse. Improvements in empirical approaches promise to eventually allow general inferences about the relative strength of different causal interactions during adaptive diversification.  相似文献   

9.
10.
Examination of genetic and ecological relationships within sibling species complexes can provide insights into species diversity and speciation processes. Alpheus angulatus and A. armillatus, two snapping shrimp species with overlapping ranges in the north-western Atlantic, are similar in morphology, exploit similar ecological niches and appear to represent recently diverged sibling species. We examined phylogenetic and ecological relationships between these two species with: (i) sequence data from two mitochondrial genes (16S rRNA and COI); (ii) data on potential differences in microhabitat distribution for A. armillatus and A. angulatus; and (iii) data from laboratory experiments on the level of reproductive isolation between the two species. DNA sequence data suggest A. armillatus and A. angulatus are sister species that diverged subsequent to the close of the Isthmus of Panama, and that haplotype diversity is lower in A. armillatus than in A. angulatus. Both species are distantly related to A. heterochaelis and A. estuariensis, two species with which A. angulatus shares some similarities in coloration. Ecological data on the distribution of A. angulatus and A. armillatus from two locations revealed differences in distribution of the two species between habitat patches, with each patch dominated by one or the other species. However, there was no apparent difference in distribution of the two species within habitat patches with respect to microhabitat location. Ecological data also revealed that heterospecific individuals often occur in close proximity (i.e. within metres or centimetres) where sympatric. Behavioural data indicated that these species are reproductively isolated, which is consistent with speciation in transient allopatry followed by post-divergence secondary contact. Our data further resolve taxonomic confusion between the sibling species, A. armillatus and A. angulatus, and suggest that sympatry in areas of range overlap and exploitation of similar ecological niches by these two recently diverged species have selected for high levels of behavioural incompatibility.  相似文献   

11.
Populations of the common mussel ( Mytilus edulis ) from the North Sea area (Skakerrak-Kattegat) and those from the Baltic Sea are almost diagnostically differentiated at five out of 22 studied allozyme loci; at a further seven loci, alleles predominant or common in one area are nearly absent in the other. Genetic distance was estimated at 0.28; this is similar to the distances of these populations to the Mediterranean mussel M. galloprovincialis. The three mussel types obviously represent equal evolutionary divergence from one another, and should also be taxonomically equally separated; a semispecies rank within a more comprehensive M. edulis complex or superspecies is suggested. The age of the Baltic mussel type ( 'M. trossulus' ), as an independent evolutionary lineage, is probably far greater than that of the post-glacial Baltic Sea.
Allele frequencies change gradually and in parallel when entering from the Kattegat through the Sound into the Baltic. Only a slight Wahlund effect at the strongly diverged Gpi and Pgm loci was found in intermediate populations, indicating that extensive hybridization of the two taxa takes place in the area. However, strong interlocus genotypic associations suggest that selection against hybrids is intense in later generations; the c. 100 km wide hybrid zone is narrow relative to the dispersal distance. The genotypic structure of the Lap locus does not conform with those of the other loci studied in the hybrid zone; it cannot be viewed merely as a neutral marker of the process of hybridization.  相似文献   

12.
Of 851 specimens ofTridentiger obscurus andt. brevispinis collected from Lake Hinuma (Ibaraki Prefecture, Japan) from July 1996 to February 1998, 49 (5.8%) comprised F1 hybrids and backcross progeny of the two species. Since the mitochondrial DNA haplotypes of the F1 hybrids reflected those ofT. brevispinis, most instances of hybridization are thought to have occurred between maleT. obscurus and femaleT. brevispinis. Although both allozyme and mitochondrial DNA analyses indicated backcrossing and introgression of mitochondrial DNA, the frequency of backcross progeny was relatively low, suggesting the existence of a natural selection to backrossing.  相似文献   

13.
This research investigates the extent and causal mechanisms of genetic population divergence in a poorly flighted passerine, the North Island Rifleman or Titipounamu (Acanthisitta chloris granti). While this species has a historically widespread distribution, anthropogenic forest clearance has resulted in a highly fragmented current distribution. We conducted analyses of mitochondrial DNA (COI and Control Region) and 12 nuclear DNA microsatellites to test for population divergence and estimate times of divergence. diyabc and biogeobears were then used to assess likely past dispersal scenarios based on both mtDNA and nDNA. The results reveal several significantly divergent lineages across the North Island of New Zealand and indicate that some populations have been isolated for extensive periods of time (0.7–4.9 mya). Modeling indicated a dynamic history of population connectivity, with a drastic restriction in gene flow between three geographic regions, followed by a more recent re‐establishment of connectivity. Our analyses indicate the dynamic influence of key geological and climatological events on the distribution of genetic diversity in this species, including support for the genetic impact of old biogeographic boundaries such as the Taupo Line and Cockayne''s Line, rather than recent anthropogenic habitat fragmentation. These findings present a rare example of an avian species with a genetic history more like that of flightless taxa and so provide new general insights into vicariant processes affecting populations of passerines with limited dispersal.  相似文献   

14.
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio‐economically, relatively little information is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; c. 21 Kya) indicated large areas of suitable habitat south of the species’ current‐day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long‐term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species.  相似文献   

15.
We analyzed sequences from a 275-bp hypervariable region in the 5' end of the mitochondrial DNA control region in 190 common chaffinches (Fringilla coelebs) from 19 populations in Europe and North Africa, including new samples from Greece and Morocco. Coalescent techniques were applied to estimate the time to the most recent common ancestor (TMRCA) and divergence times of these populations. The first objective of this study was to infer the locations of refugia where chaffinches survived the last glacial episode, and this was achieved by estimating the TMRCA of populations in regions surrounding the Mediterranean that were unglaciated in the late Pleistocene. Although extant populations in Iberia, Corsica, Greece, and North Africa harbor haplotypes that are basal in a phylogenetic tree, this information alone cannot be used to infer that these localities served as refugia, because it is impossible to infer the ages of populations and their divergence times without also considering the population genetic processes of mutation, migration, and drift. Provided we assume the TMRCAs of populations are a reasonable estimate of a population's age, coalescent-based methods place resident populations in Iberia, Corsica, Greece, and North Africa during the time of the last glacial maximum, suggesting these regions served as refugia for the common chaffinch. The second objective was to determine when populations began diverging from each other and to use this as a baseline to estimate current levels of gene flow. Divergence time estimates suggest that European populations began diverging about 60,000 years before present. The relatively recent divergence of populations in North Africa, Italy, and Iberia may explain why classic migration estimates based on equilibrium assumptions are high for these populations. We compare these estimates with nonequilibrium-based estimates and show that the nonequilibrium estimates are consistently lower than the equilibrium estimates.  相似文献   

16.
An outstanding issue in the study of insect host races concerns the idea of ‘recursive adaptive divergence’, whereby adaptation can occur repeatedly across space and/or time, and the most recent adaptive episode is defined by one or more previously similar cases. The host plant shift of the apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae, Carpomyini), from ancestral downy hawthorn [Crataegus mollis (Torr. & A. Gray) Scheele] to introduced, domesticated apple (Malus domestica Borkh.) in the eastern USA has long served as a model system for investigating ecologically driven host race formation in phytophagous insect specialists. Here, we report results from an annual geography survey of eclosion time demonstrating a similar ecological pattern among nascent host-associated populations of the fly recently introduced ca. 40 years ago from its native range in the east into the Pacific Northwest (PNW) region of the USA. Specifically, using data collected from 25 locations across 5 years, we show that apple-infesting fly populations in the PNW have rapidly and repeatedly shifted (and maintained differences in) their adult eclosion life-history timing to infest two novel hawthorn hosts with different fruiting phenologies – a native species (Crataegus douglasii Lindl.) and an introduced species (Crataegus monogyna Jacq.) – generating partial allochronic reproductive isolation in the process. The shifts in the PNW parallel the classic case of host race formation in the eastern USA, but have occurred bi-directionally to two hawthorn species with phenologies slightly earlier (black hawthorn) and significantly later (ornamental hawthorn) than apple. Our results imply that R. pomonella can both possess and retain extensive-standing variation (i.e., ‘adaptive memory’) in diapause traits, even following introductions, to rapidly and temporally track novel phenological host opportunities when they arise. Thus, ‘specialized’ host races may not constitute evolutionary dead ends. Rather, adaptive phenotypic and genetic memory may carry over from one host shift to the next, recursively facilitating host race formation in phytophagous insects.  相似文献   

17.
18.
In social species, breeding system and gregarious behavior are key factors influencing the evolution of large‐scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male‐mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.  相似文献   

19.
Accurate estimates of drag on marine animals are required to investigate the locomotive cost, propulsive efficiency, and the impacts of entanglement if the animal is carrying fishing gear. In this study, we performed computational fluid dynamics analysis of a 10 m (length over all) right whale to obtain baseline measurements of drag on the animal. Swimming speeds covering known right whale speed range (0.125 m/s to 8 m/s) were tested. We found a weak dependence between drag coefficient and Reynolds number. At a swimming speed of 2 m/s, we analyzed the boundary layer thicknesses, the flow regimes, and drag components. We found the thickest boundary layer at the lateral sides of the peduncle, whereas the boundary layer thickness over the outer part of the flukes was less than 1.7 cm. Laminar flow occurred over the anterior ~0.6 LoA and turbulent flow from ~0.8 LoA to the fluke notch. On the surfaces of the flukes outside of the body wake region, flow was laminar. Our most significant finding is that the drag coefficient (0.0071–0.0059) of a right whale for swimming speeds ranging from 0.25 m/s to 2 m/s is approximately twice that of many previous estimates for cetaceans.  相似文献   

20.
Debes PV  Zachos FE  Hanel R 《Molecular ecology》2008,17(17):3873-3888
We examined the genetic structure of the European sprat ( Sprattus sprattus ) by means of a 530-bp sequence of the mitochondrial control region from 210 fish originating from seven sampling localities of its distributional range. Phylogeographical analysis of 128 haplotypes showed a phylogenetic separation into two major clades with the Strait of Sicily acting as a barrier to gene flow between them. While no population differentiation was observed based on analysis of molecular variance and net nucleotide differences between samples of the Baltic Sea, the North Sea and the Bay of Biscay nor between the Black Sea and the Bosporus, a strong population differentiation between these samples and two samples from the Mediterranean Sea was found. Further, the biggest genetic distance was observed within the Mediterranean Sea between the populations of the Gulf of Lyon and the Adriatic Sea, indicating genetic isolation of these regions. Low genetic diversities and star-like haplotype networks of both Mediterranean Sea populations point towards recent demographic expansion scenarios after low population size, which is further supported by negative F S values and unimodal mismatch distributions with a low mean. Along the northeast Atlantic coast, a northwards range expansion of a large and stable population can be assumed. The history of a diverse but differentiated Black Sea population remains unknown due to uncertainties in the palaeo-oceanography of this sea. Our genetic data did not confirm the presently used classification into subspecies but are only preliminary in the absence of nuclear genetic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号