首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the computer-assisted method of smoothed spatial averaging, spatial and temporal patterns of cell distribution and mitotic activity were analyzed in the cranial mesenchyme underlying the mesencephalic neural folds of mouse embryos maintained in roller tube culture. Total cell density increased in central and medial mesenchymal regions after 12 hr in culture, decreased after 18 hr, and showed a further decrease after 24 hr when the neural folds of the embryos had elevated, converged, and were fusing or fused. Mitotic activity, as measured by the ratio of 3H-thymidine-labeled cells to unlabeled cells, was highest in the central mesenchyme at all culture times. Embryos were also cultured in the presence of diazo-oxo-norleucine (DON), which inhibits glycosaminoglycan and glycoprotein synthesis. After 24 hr in culture, neural folds of DON-treated embryos had failed to elevate. Total cell density increased in central and medial regions of the mesenchyme of DON-treated folds at 12 hr but showed no significant decrease in these regions with further culture. Mitotic activity was highest in the central mesenchyme of these treated embryos. These results suggest that cell distribution patterns observed in the cranial mesenchyme during neural fold elevation in normal cultured embryos are not produced by regional differences in mitotic activity. Rather, we propose that cell distribution patterns in the central and medial regions of the mesenchyme result from expansion of a glycosaminoglycan-rich extracellular matrix that disperses cells from these regions and decreases their density. In DON-treated embryos, in which expansion of the mesenchyme is prohibited by the decreased glycosaminoglycan and glycoprotein content of the extracellular matrix, mitotic activity apparently determines these patterns.  相似文献   

2.
The cranial paraxial mesoblast is patterned into segmental units termed somitomeres. Recently we demonstrated the morphological relationship between the migratory pathways of cranial neural crest cells and the patterned primary mesenchyme of chick embryos (Anderson and Meier, '81). Since extracellular matrix, particularly hyaluronate, is also distributed in cranial crest pathways, embryos were given sub-blastodisc injections of hyaluronidase just prior to neural tube fusion and neural crest migration to remove matrix. Histological sections of enzyme-treated embryos showed that Alcian blue staining of hyaluronate was significantly reduced. Surface ectoderm appeared collapsed on the subjacent mesoderm as well. Examination of embryos with the scanning electron microscope (SEM) revealed that paraxial mesoderm remained segmentally patterned even though it appeared more condensed because of a reduction in intercellular space between mesenchymal cells. In enzyme-treated embryos, the rostral crest cells spread over the dorsal surfaces of the first four somitomeres, as they would do normally. This distribution of neural crest cells occurs even when enzyme treatment interferes with neural tube fusion at that level. We conclude that 1) neural tube fusion is not a prerequisite for the timely release of cranial crest in the chick embryo and 2) that much of the organized hyaluronate-rich matrix that lies in the path of cranial crest is not essential for crest emigration or patterned distribution.  相似文献   

3.
While much has been learned about how endothelial cells transform to mesenchyme during cardiac cushion formation, there remain fundamental questions about the developmental fate of cushions. In the present work, we focus on the growth and development of cushion mesenchyme. We hypothesize that proliferative expansion and distal elongation of cushion mesenchyme mediated by growth factors are the basis of early valve leaflet formation. As a first step to test this hypothesis, we have localized fibroblast growth factor (FGF)-4 protein in cushion mesenchymal cells at the onset of prevalve leaflet formation in chick embryos (Hamburger and Hamilton stage 20-25). Ligand distribution was correlated with FGF receptor (FGFR) expression. In situ hybridization data indicated that FGFR3 mRNA was confined to the endocardial rim of the atrioventricular (AV) cushion pads, whereas FGFR2 was expressed exclusively in cushion mesenchymal cells. FGFR1 expression was detected in both endocardium and cushion mesenchyme as well as in myocardium. To determine whether the FGF pathways play regulatory roles in cushion mesenchymal cell proliferation and elongation into prevalvular structure, FGF-4 protein was added to the cushion mesenchymal cells explanted from stage 24-25 chick embryos. A significant increase in proliferative ability was strongly suggested in FGF-4-treated mesenchymal cells as judged by the incorporation of 5'-bromodeoxyuridine (BrdU). To determine whether cushion cells responded similarly in vivo, a replication-defective retrovirus encoding FGF-4 with the reporter, bacterial beta-galactosidase was microinjected into stage 18 chick cardiac cushion mesenchyme along the inner curvature where AV and outflow cushions converge. As compared with vector controls, overexpression of FGF-4 clearly induced expansion of cushion mesenchyme toward the lumen. To further test the proliferative effect of FGF-4 in cardiac cushion expansion in vivo (ovo), FGF-4 protein was microinjected into stage 18 chick inner curvature. An assay for BrdU incorporation indicated a significant increase in proliferative ability in FGF-4 microinjected cardiac cushion mesenchyme as compared with BSA-microinjected controls. Together, these results suggest a role of FGF-4 for cardiac valve leaflet formation through proliferative expansion of cushion mesenchyme.  相似文献   

4.
This study represents a first step in investigating the possible involvement of transforming growth factor-beta (TGF-beta) in the regulation of embryonic chick limb cartilage differentiation. TGF-beta 1 and 2 (1-10 ng/ml) elicit a striking increase in the accumulation of Alcian blue, pH 1-positive cartilage matrix, and a corresponding twofold to threefold increase in the accumulation of 35S-sulfate- or 3H-glucosamine-labeled sulfated glycosaminoglycans (GAG) by high density micromass cultures prepared from the cells of whole stage 23/24 limb buds or the homogeneous population of chondrogenic precursor cells comprising the distal subridge mesenchyme of stage 25 wing buds. Moreover, TGF-beta causes a striking (threefold to sixfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific proteoglycan. Only a brief (2 hr) exposure to TGF-beta at the initiation of culture is sufficient to stimulate chondrogenesis, indicating that the growth factor is acting at an early step in the process. Furthermore, TGF-beta promotes the formation of cartilage matrix and cartilage-specific gene expression in low density subconfluent spot cultures of limb mesenchymal cells, which are situations in which little, or no chondrogenic differentiation normally occurs. These results provide strong incentive for considering and further investigating the role of TGF-beta in the control of limb cartilage differentiation.  相似文献   

5.
Current in vitro investigations suggest that ectoderm plays a major role in limb morphogenesis by producing a diffusible factor which inhibits the chondrogenesis of the underlying mesenchyme. In the present work we report evidence supporting such an ectodermal role in vivo. Surgical removal of the marginal ectoderm from the third interdigit of chick leg buds at stages 27 to 30 induces the formation of PNA-positive prechondrogenic mesenchymal condensations 15 hr after the operation. The incidence of prechondrogenic condensations achieved 47, 95.2, and 92.8 of the experimental embryos of stages 27, 28, and 29, respectively. This high rate of prechondrogenic aggregate formation contrasted with a lower incidence of ectopic cartilage formation detectable by Alcian blue staining 40 hr after the operation. The sequential analysis of the experimental interdigits by means of peanut lectin labeling suggests that a number of prechondrogenic condensations undergo disaggregation 20 and 30 hr after the operation failing to form fully differentiated cartilages. When ectoderm removal was accompanied by the elimination of a variable amount of interdigital mesenchyme the incidence of prechondrogenic aggregates showed little differences but the formation of fully differentiated cartilages was reduced at a rate proportional to the amount of interdigital mesenchyme removed. From this study it can be concluded that the ectoderm in vivo appears to inhibit the process of aggregation of the mesenchymal cells to form prechondrogenic condensations. Furthermore our results suggest that as observed in vitro (C. P. Cotrill, C. Archer, and L. Wolpert, 1987, Dev. Biol. 122, 503-515) the transformation of prechondrogenic aggregates into fully differentiated cartilage requires the involvement of a critical amount of mesenchymal cells.  相似文献   

6.
7.
It is currently proposed that accumulation of hyaluronic acid (HA) and subsequent hydration of the cardiac extracellular matrix is required for normal looping of the vertebrate heart. To test this hypothesis, we cultured Wistar rat embryos (Gestational Day 9.5) in rat serum plus 20 TRU/ml of Streptomyces hyaluronidase (treated embryos) or rat serum alone (control embryos). Despite degradation of HA as documented by Alcian blue staining at pH 2.5, 57 of 59 treated embryos developed normally looped hearts after 36 hr in culture. These experiments suggest that the accumulation of HA is not required for normal looping of the mammalian heart in situ.  相似文献   

8.
The role of hyaluronic acid (HA) in embryonic mouse nasal process outgrowth was assessed following administration of Streptomyces hyaluronidase, an enzyme that degrades HA. Enzyme-treated and control embryos were compared morphologically 4 and 24 hr after treatment on day 11 of gestation. After 4 hr the nasal processes of treated embryos were reduced in volume compared to controls. This size reduction was associated with a decrease in the amount of extracellular space in the nasal processes and a change in mesenchymal cell shape. Extracellular matrix material observed in controls included collagenlike fibers, 25-30-nm granules, and a delicate meshwork of 3-4-nm filaments. Basal laminae exhibited filamentous and granular material that extended to the surface of underlying cells. Similar matrix constituents were observed in treated embryos with the exception of the 3-4-nm filaments, which probably represent HA. By 24 hr after treatment, embryonic circulation had ceased and heart beat was slow. The nasal processes of these embryos were very small, but their configuration was such that fusion had often begun. Thus the presence of HA appears to be important in maintenance of the normal volume of the nasal processes and in maintenance of normal mesenchymal cell morphology, but other factors appear to contribute to the change in process shape requisite for fusion.  相似文献   

9.
BACKGROUND: Methanol administered to C57BL/6J mice during gastrulation causes severe craniofacial dysmorphology. We describe dysmorphogenesis, cell death, cell cycle assessment, and effects on development of cranial ganglia and nerves observed following administration of methanol to pregnant C57BL/6J mice on gestation day (GD) 7. METHODS: Mice were injected (i.p.) on GD 7 with 0, 2.3, 3.4, or 4.9 gm/kg methanol, split into two doses. In embryos of mice treated with 0 or 4.9 gm/kg methanol, we used histology and LysoTracker red staining on GD 8 0 hr through GD 8 18 hr to examine cell death and dysmorphogenesis, and we also evaluated cell-cycle distribution and proliferation using flow cytometry (FCM) and BrdU immunohistochemistry. On GD 10, we evaluated the effect of GD 7 exposure to 0, 2.3, 3.4, or 4.9 gm/kg methanol on cranial ganglia and nerve development using neurofilament immunohistochemistry. RESULTS: Methanol treatment on GD 7 resulted in reduced mesenchyme surrounding the fore- and midbrain, and in the first branchial arches, by GD 8 12 hr. There were disruptions in the forebrain neuroepithelium and optic pit. Neural crest cell emigration from the mid- and hindbrain region was reduced in methanol-exposed embryos. Methanol had no apparent effect on BrdU incorporation or cell-cycle distribution on GD 8. Cell death was observed in the hindbrain region along the path of neural crest migration and in the trigeminal ganglion on GD 8 18 hr. Development of the cranial ganglia and nerves was adversely affected by methanol. Development of ganglia V, VIII, and IX was decreased at all dosage levels; ganglion VII was reduced at 3.4 and 4.9 gm/kg, and ganglion X was reduced at 4.9 gm/kg. CONCLUSIONS: These results suggest that gastrulation-stage methanol exposure affects neural crest cells and the anterior mesoderm and neuroepithelium. Cell death was evident in areas of migrating neural crest cells, but only at time points after methanol was cleared from the embryo, suggesting an indirect effect on these cells. Birth Defects Research (Part A), 2004. Published 2004 Wiley-Liss, Inc.  相似文献   

10.
Rosen MB  Chernoff N 《Teratology》2002,65(4):180-190
BACKGROUND: 5-Aza-2'-deoxycytidine (dAZA), causes hindlimb phocomelia in CD-1 mice. Studies in our laboratory have examined the hypothesis that compound- induced changes in gene expression may uniquely affect hindlimb pattern formation. The present study tests the hypothesis that dAZA causes limb dysplasia by inducing cytotoxicity among rapidly proliferating cells in the limb bud mesenchyme. METHODS: Pregnant CD-1 mice were given a teratogenic dose of dAZA (i.p.) at different times on GD 10 and fetuses evaluated for skeletal development in both sets of limbs by standard methods. Using general histology and BrdU immunohistochemistry, limb mesenchymal cell death and cell proliferation were then assessed in embryos at various times post dosing, shortly after initial limb bud outgrowth. The effect of dAZA on early limb chondrogenesis was also studied using Northern analysis of scleraxis and Alcian blue staining of whole mount limb buds. RESULTS: Compound related hindlimb defects were not restricted to a specific set of skeletal elements but consisted of a range of temporally related limb anomalies. Modest defects of the radius were observed as well. These results are consistent with a general insult to the limb mesenchyme. Mesenchymal cell death and reduced cell proliferation were also observed in both sets of limbs. The timing and location of these effects indicate a role for cytotoxicity in the etiology of dAZA induced limb defects. These effects also agree with the greater teratogenicity of dAZA in the hindlimb because they were more pronounced in that limb. The expression of scleraxis, a marker of early chondrogenesis, was reduced 12 hr after dAZA exposure, a time coincident with maximal cell death, as was the subsequent emergence of Alcian blue stained long bone anlagen. CONCLUSIONS: These findings support the hypothesis that cytotoxic changes in the limb bud mesenchyme during early limb outgrowth can induce the proximal limb truncations characteristic of phocomelia after dAZA administration.  相似文献   

11.
This study was undertaken to investigate the establishment of the scleral cartilage in the chick embryo. Johnston et al. (1974) has demonstrated that most of the cells of the scleral cartilage originate in the cranial neural crest. By means of a series of chorioallantoic grafts of pigmented retina, and its adherent periocular mesenchyme from stage 11 to 25, the present experiments show that the cranial neural crest cells arrive at the eye in sufficient numbers to form cartilage by stage 14. Pigmented retina, denuded of mesenchyme, from stage 16 embryos implanted into the head of stage 13 embryos induces cartilage formation in head mesenchyme. However, neither pigmented retina nor spinal cord could induce cartilage formation in chorioallantoic mesenchyme. Combination grafts of cranial neural crest and presumptive optic vesicle developed neural tissue, pigmented retina, and in some cases sclera-like cartilage. Thus, periorbital mesenchyme, derived largely from cranial neural crest, at about stage 14 develops the scleral cartilage in response to induction by the pigmented retina.  相似文献   

12.
Recent evidence has demonstrated that 13-cis-retinoic acid (13-cis-RA, or isotretinoin) is responsible for various craniofacial malformations in the rodent and human embryo. Our studies have been directed toward understanding this effect using mouse whole embryo and primary cell cultures. In whole embryo culture, 13-cis-RA caused significant overall embryonic growth retardation, especially in the primary and secondary palatal processes. In embryos explanted on day 10 of gestation and exposed for 24 or 48 hr, the mesenchyme beneath the epithelium of the nasal and maxillary processes contained pyknotic nuclei as well as a dramatically reduced number of nuclei incorporating 3H-thymidine. The secondary palatal processes and the roof of the oral-nasal cavity had fewer mesenchymal cells than control embryos. The incorporation of 3H-thymidine into TCA-insoluble macromolecules was 30% less in the retinoid-treated heads. In primary cell cultures from day-12 mouse secondary palatal mesenchyme, subsequent cell growth was decreased at concentrations of 13-cis-RA greater than 1 X 10(-5) M. After a 40-hr treatment period, labeling indices in retinoid-treated cells were significantly lower than control values (25% compared with 40%). Retinoic acid also caused a significant, concentration-dependent decrease in 3H-thymidine incorporation. The inhibitory effect of 13-cis-RA on proliferation of oral-nasal mesenchymal cells appears to be related to the production of craniofacial malformations.  相似文献   

13.
14.
The central nervous system is derived from the neural plate that undergoes a series of complex morphogenetic movements resulting in formation of the neural tube in a process known as neurulation. During neurulation, morphogenesis of the mesenchyme that underlies the neural plate is believed to drive neural fold elevation. The cranial mesenchyme is comprised of the paraxial mesoderm and neural crest cells. The cells of the cranial mesenchyme form a pourous meshwork composed of stellate shaped cells and intermingling extracellular matrix (ECM) strands that support the neural folds. During neurulation, the cranial mesenchyme undergoes stereotypical rearrangements resulting in its expansion and these movements are believed to provide a driving force for neural fold elevation. However, the pathways and cellular behaviors that drive cranial mesenchyme morphogenesis remain poorly studied. Interactions between the ECM and the cells of the cranial mesenchyme underly these cell behaviors. Here we describe a simple ex vivo explant assay devised to characterize the behaviors of these cells. This assay is amendable to pharmacological manipulations to dissect the signaling pathways involved and live imaging analyses to further characterize the behavior of these cells. We present a representative experiment demonstrating the utility of this assay in characterizing the migratory properties of the cranial mesenchyme on a variety of ECM components.  相似文献   

15.
The rapid catabolism of glutamine by the cultured human lymphoblast line WI-L2 can be inhibited greater than 95% by incubation of cell suspensions with 6-diazo-5-oxo-L-norleucine (DON). The inhibition persists for at least four hours after removal of DON from the cell suspension. The exposure of cells to DON ihibits over 95% of the glutaminase activity measured in lysates in the presence of either phosphate or maleate. Similarly, gamma-glutamyl transpeptidase, assayed with gamma-glutamyl-p-nitroanilide as substrate and glycyglycine as acceptor, is inhibited over 90%. DON-treated and control cells accumulated radioactive material from suspensions containing [14C]-L-glutamine at similar initial rates; the radioactive material accumulated by the DON-treated cells is all recoverable as glutamine while the radioactive material accumulated by untreated cells is principally recovered as glutamate.  相似文献   

16.
Mandibular epithelia and mesenchyme from chick embryos of Hamburger and Hamilton (H.H.) stage 18-25 were cultured intact, in isolation, or in recombinations in the presence or absence of 5-40 ng/ml epidermal growth factor (EGF). 3H-thymidine labelling demonstrated that mesenchyme influenced epithelial mitotic activity and vice versa. EGF can substitute for the epithelial effect. The stimulation of mesenchymal proliferation by H.H. 18 and 22 epithelia correlated with high levels of epithelial proliferation. Epithelial proliferation was low at H.H. 25 and unaffected by mesenchyme or by EGF. Epithelial stimulation of mesenchymal proliferation began earlier (H.H. 18) than did mesenchymal stimulation of epithelial proliferation (H.H. 22); i.e., within the ages tested, the epithelium initiated these reciprocal mitogenic interactions. That epithelial dependence on mesenchyme coincided with epithelial bone-evoking properties, suggested a) that mesenchyme promotes or maintains epithelial bone-promoting activity and b) that the critical differentiative influence of epithelium on mesenchyme is a mitogenic one. The temporal correlation between a sharp decline in mesenchymal proliferation and termination of the osteogenic epithelial-mesenchymal interaction at H.H. 25 further supports a connection between epithelial maintenance of mesenchymal proliferation and epithelial evocation of osteogenesis.  相似文献   

17.
Vital dye analysis of cranial neural crest cell migration in the mouse embryo.   总被引:15,自引:0,他引:15  
The spatial and temporal aspects of cranial neural crest cell migration in the mouse are poorly understood because of technical limitations. No reliable cell markers are available and vital staining of embryos in culture has had limited success because they develop normally for only 24 hours. Here, we circumvent these problems by combining vital dye labelling with exo utero embryological techniques. To define better the nature of cranial neural crest cell migration in the mouse embryo, premigratory cranial neural crest cells were labelled by injecting DiI into the amniotic cavity on embryonic day 8. Embryos, allowed to develop an additional 1 to 5 days exo utero in the mother before analysis, showed distinct and characteristic patterns of cranial neural crest cell migration at the different axial levels. Neural crest cells arising at the level of the forebrain migrated ventrally in a contiguous stream through the mesenchyme between the eye and the diencephalon. In the region of the midbrain, the cells migrated ventrolaterally as dispersed cells through the mesenchyme bordered by the lateral surface of the mesencephalon and the ectoderm. At the level of the hindbrain, neural crest cells migrated ventrolaterally in three subectodermal streams that were segmentally distributed. Each stream extended from the dorsal portion of the neural tube into the distal portion of the adjacent branchial arch. The order in which cranial neural crest cells populate their derivatives was determined by labelling embryos at different stages of development. Cranial neural crest cells populated their derivatives in a ventral-to-dorsal order, similar to the pattern observed at trunk levels. In order to confirm and extend the findings obtained with exo utero embryos, DiI (1,1-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate) was applied focally to the neural folds of embryos, which were then cultured for 24 hours. Because the culture technique permitted increased control of the timing and location of the DiI injection, it was possible to determine the duration of cranial neural crest cell emigration from the neural tube. Cranial neural crest cell emigration from the neural folds was completed by the 11-somite stage in the region of the rostral hindbrain, the 14-somite stage in the regions of the midbrain and caudal hindbrain and not until the 16-somite stage in the region of the forebrain. At each level, the time between the earliest and latest neural crest cells to emigrate from the neural tube appeared to be 9 hours.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The calcified tissues involved in the early morphogenesis of the cranial vault were studied by microradiographic analysis and histological techniques in 12 chick embryos on the 9th, 12th, and 14th days of incubation. On the 9th day, the frontal, parietal, and squamosal bones are comprised of a thin lamina of chondroid tissue deposited at a short distance from the fibers of the dura mater. Woven bone formation takes place in the calvarial mesenchyme only after the 12th day of incubation and occurs mainly on the external side of the chondroid primordium. The present data obviously indicate that the primitive desmocranium of the chick embryo, which is usually known to be formed by intramembranous ossification, consists first of chondroid tissue. This tissue represents thus the initial modality of skeletogenic differentiation within the cephalic mesenchyme of the cranial vault.  相似文献   

19.
To elucidate mechanisms that may control development of the gross anatomical nerve pattern, motoneuron outgrowth into the chick hindlimb was examined using orthograde labeling, scanning and transmission electron microscopy, and Alcian blue staining. Results show that growth cones are not guided by contact with oriented extracellular fibrils, aligned mesenchyme cells, the myotome, or the vasculature. Pathways are not delineated by cell-free space or channels of lower cell density; however, densely packed mesenchyme may form barriers that channel outgrowth. In addition, abundant mesenchymal cell death was seen at the nerve front. This cell death may provide space that encourages growth cone advancement. Pathways often lie along interfaces between areas that stain darkly and lightly with Alcian blue, which specifically stains glycosaminoglycans, and growth cones never penetrate areas that stain intensely, such as the pelvic girdle, which is known to be a barrier to outgrowth. Leading growth cones form specialized contacts with mesenchyme cells, but the predominant contacts are interneuronal. It is proposed that the anatomical pattern of outgrowth is determined by the distribution of preferred substrata, the most preferred substratum being other neurites. Further, neurites tend to prefer loose mesenchyme to dense mesenchyme or areas rich in glycosaminoglycans.  相似文献   

20.
The formation of spicules and development of pluteus arms in sea urchin embryos were strongly blocked by H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride) but were not affected by HA1004 ( N -(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride). Archenteron formation occurred normally in the presence of these compounds. Late gastrulae (28 hr after fertilization) were exposed to 32Pi for 30 min at 20°C, and then dissociated and their primary mesenchyme cells with spicules, embryo-wall cells and archenteron cells were separated. Then, the radioactivities in the protein fractions of these separated cells were measured. Results showed that culture of embryos with H-7 strongly inhibited 32p incorporation into proteins in primary mesenchyme cells but caused little inhibition of its incorporations in embryo-wall cells and archenteron cells. The effective concentrations of H-7 for inhibition of 32p incorporation were within the range that blocked spicule formation and growth of pluteus arms in embryos. HA1004 only slightly inhibited 32p incorporation into protein in mesenchyme cells, embryo-wall cells and archenteron cells of embryos exposed to 32Pi. Protein kinase C activity was detectable only in isolated primary mesenchyme cells associated with spicule structures. These suggest that phosphorylation of proteins by protein kinase C contributes to the formation of spicule structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号