首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
[目的]利用球孢白僵菌进行固定化生物转化,将底物R-(+)-2-苯氧基丙酸(D-PPA)转化合成产物R-(+)-2-(4-羟基苯氧基)丙酸(D-HPPA)。[方法]利用海藻酸钠和聚乙烯醇对球孢白僵菌进行包埋处理,并对包埋条件进行累积优化。[结果]4%海藻酸钠和4. 5%聚乙烯醇混合后,再加入2. 5%的氯化钙作为交联剂交联8 h。在此包埋条件下制备的白僵菌凝胶珠,置于30 g/L的D-PPA进行固定化生物转化。反应5 d后,产物浓度最终为29. 9 g/L,平均生产强度为5. 98 g/(L·d),底物转化率为99. 7%。[结论]海藻酸钠和聚乙烯醇可用于白僵菌的固定化,且较游离菌体的生物转化的反应周期缩短28. 6%,平均生产强度增加64. 7%,底物转化率提高17. 7%。  相似文献   

2.
石油生物脱硫菌Agrobacterium tumefaciens UP-3的固定化研究   总被引:1,自引:0,他引:1  
对能降解二苯并噻吩(DBT)的根癌土壤杆菌AgrobacteriumtumefaciensUP3菌株进行了固定化研究,以聚乙烯醇(PVA)和海藻酸钠(SA)混合物为包埋法固定化载体,固定化最佳操作条件为4℃交联,PVA和SA混合物总浓度7%,两者最佳浓度比为6,细胞浓度为0.05g/mL。当DBT加入量为2.7mmol/L时,UP-3的静息细胞最高脱硫率为13%,而固定化细胞的脱硫效率超过了60%;固定化细胞的最佳使用条件为降解5d,温度28℃~32℃。  相似文献   

3.
对能降解二苯并噻吩(DBT)的根癌土壤杆菌AgrobacteriumtumefaciensUP3菌株进行了固定化研究,以聚乙烯醇(PVA)和海藻酸钠(SA)混合物为包埋法固定化载体,固定化最佳操作条件为4℃交联,PVA和SA混合物总浓度7%,两者最佳浓度比为6,细胞浓度为0.05g/mL。当DBT加入量为2.7mmol/L时,UP-3的静息细胞最高脱硫率为13%,而固定化细胞的脱硫效率超过了60%;固定化细胞的最佳使用条件为降解5d,温度28℃~32℃。  相似文献   

4.
曹文娟  袁海生 《菌物学报》2016,35(3):343-354
采用壳聚糖交联法和海藻酸钠-壳聚糖包埋交联法固定化桦褶孔菌产生的漆酶,探讨最佳固定化条件,固定化漆酶的温度,pH稳定性及操作稳定性,并以两种固定化酶分别对4种染料进行了降解.结果表明:(1)壳聚糖交联法固定化漆酶的最佳条件为:壳聚糖2.5%,戊二醛7%,交联时间2h,固定化时间5h,给酶量1g壳聚糖小球:1mL酶液(1U/mL),固定化效率56%;(2)海藻酸钠-壳聚糖包埋交联法固定化漆酶的最佳条件为:海藻酸钠浓度4%,壳聚糖浓度0.7%,氯化钙浓度5%,戊二醛浓度0.6%,给酶量4mL 4%海藻酸钠:1mL酶液(1U/mL),固定化效率高达86%;(3)固定化的漆酶相比游离漆酶有更好的温度和pH稳定性;(4)比较两种固定化漆酶,海藻酸钠-壳聚糖包埋交联法固定化酶的温度及酸度稳定性要优于壳聚糖固定化酶,但可重复操作性要弱于后者,两者重复使用8次后的剩余酶活比率分别为71%及64%;(5)两种固定化酶对所选的4种不同结构的合成染料均有较好的降解效果,其中壳聚糖固定化酶对茜素红的降解效果及重复使用性极佳,重复降解40mg/L的茜素红10次,降解率仍保持在100%.  相似文献   

5.
淮骏  张书祥 《工业微生物》2011,41(6):99-103
采用海藻酸钠包埋植物乳杆菌并通过测定固定化细胞发酵清液的抑菌效果,优化得到的固定化最佳工艺条件为:海藻酸钠浓度为3%,CaCl2浓度为1.5%,菌悬液体积为3.5 mL(4.0×108 cfu/mL).固定化细胞重复发酵多批次效果良好.固定化细胞发酵条件优化结果表明:最适pH为7.0,最适温度为36℃,培养基中添加0....  相似文献   

6.
固定化对酵母细胞发酵产ATP能力的影响   总被引:1,自引:0,他引:1  
通过试验对酵母菌细胞的固定化方法及固定化酵母细胞在发酵生产ATP方面的应用进行了探讨。综合固定化颗粒的性能指标(粒径、弹性和机械强度)和发酵产ATP的能力,通过正交试验对酵母菌细胞的包埋条件进行了优化,确定了固定化酵母细胞的较优组合为聚乙烯醇3.5%、海藻酸钠2%、CaCl23%及交联时间6h,发酵后ATP含量最高,达到0.716g/L。进一步发酵条件的试验证实,固定化能提高酵母菌细胞对温度适应范围,延长发酵生产周期,从而提高菌体的利用率。  相似文献   

7.
研究了不同因素对制备固定化荧光假单胞菌脂肪酶的影响及固定化酶的酶学性质,并初步探讨了利用该固定化酶制备生物柴油的工艺。以海藻酸钠明胶为复合载体,采用包埋法制备固定化荧光假单胞菌脂肪酶,考察了载酶量、颗粒直径等因子对固定化效果的影响,并用制备的固定化酶进行了酶促酯交换合成生物柴油的工艺研究,考察了反应条件如酶量、反应温度、甲醇流加方式、醇油比等因素对甲酯得率的影响。试验结果表明,制备固定化荧光假单胞菌脂肪酶的最优条件为:每克载体给酶量为300 IU,选用6号注射器针头(内径为0.5 mm);通过酯交换,催化大豆油合成生物柴油的最佳反应工艺参数为:固定化酶25%,醇油比4:1,含水量6%,反应温度40℃;此条件下反应35 h后,甲酯的最高得率可达82%。  相似文献   

8.
三种节杆菌产生谷氨酰胺合成酶的研究   总被引:2,自引:0,他引:2  
谷氨酰胺合成酶是应用广泛的生物酶类,以LNU 0165,LNU 0066和LNU 0254为实验出发菌株,对不同pH、温度条件下产谷氨酰胺合成酶的最佳发酵条件进行了研究,通过测定谷氨酰胺合成酶,并进行比较选择高产菌株,LNU 0165产酶活最高,经16S rRNA的序列和生理生化的鉴定,确定LNU 0165为球形节杆菌(Arthrobacter globiformis),其GS酶的最适温度为60℃,最适pH为7.5左右。  相似文献   

9.
固定化β-葡萄糖苷酶催化合成红景天甙的研究   总被引:4,自引:0,他引:4  
目的:利用海藻酸钠和壳聚糖固定β-葡萄糖苷酶,催化合成红景天甙,并对固定化条件的选择、固定化酶催化合成红景天甙的条件优化进行研究.方法:采用正交实验方法寻求最佳固定化条件,以转化率为指标对合成条件进行优化.结果:固定β-葡萄糖苷酶的最佳条件为:壳聚糖浓度1.5%,吸附时间9h,交联时间12h,戊二醛浓度1.0%,吸附温度O℃,酶活力回收率达74.38%.催化合成红景天甙的最佳条件为:反应介质pH 5.8醋酸缓冲液/叔丁醇(1:9),底物浓度酩醇5g/L,D-葡萄糖与酪醇摩尔比为1:1,反应时间50h,反应温度50℃,红景天甙的转化率最高可达到71.9%.结论:固定化酶催化合成红景天甙的转化率得到较大的提高,为工业化生产提供了可靠的理论依据.  相似文献   

10.
复合固定化光合细菌及其处理养鱼水的效果   总被引:2,自引:0,他引:2  
利用海藻酸钠和沸石,将含有球形红假单胞菌、荚膜红假单胞菌、沼泽红假单胞菌、万尼氏红微菌等菌体的复合光合细菌固定化,研究其对养鱼水的氮磷去除效果.比较了两种不同包埋材料固定化光合细菌处理养鱼废水的效果,对固定化光合细菌去除废水中氮磷的工艺条件进行了优化、并通过生物反应器连续处理养鱼水分析了处理后水质的效果.通过2 种固定化工艺的比较,确定了2 %沸石+2 %海藻酸钠(CA )的凝胶剂组合作为固定材料,其颗粒内生物活性最高.复合固定化光合细菌处理养鱼水的最佳条件为:厌氧光照条件下,颗粒粒径3 mm ,包埋比1 :5 ,颗粒投加量5 mg·L-1 ,4d 后养鱼水中NH4+-N 、PO43-和CODMn 的去除率分别为74.4%、84.26%、78.92%.此外,通过连续试验可以看出,固定化光合细菌具有明显的去除氨氮、磷酸盐的作用,其在净化养鱼水质方面具有非常明显的优越性.  相似文献   

11.
When cultured mouse cells strain L are incubated in the presence of glutamine (normally a component of their growth medium) both the transferase (γ-glutamyl transfer) and the synthetase (acyl activation) activities of glutamine synthetase are equally depressed, the transferase being on the whole 5 times higher than the synthetase activity. Whereas the depressive action of glutamine is established within 24 hours, the increase in enzymatic activity following withdrawal of glutamine is markedly slower. The action of glutamine involves two mechanisms, neither of which requires protein or RNA synthesis: (a) inhibition of the synthesis of glutamine synthetase; and (b) promotion of destruction of preexisting enzyme or complements of it.  相似文献   

12.
Glutamine synthetase activity from Synechocystis sp. strain PCC 6803 is regulated as a function of the nitrogen source available in the medium. Addition of 0.25 mM NH4Cl to nitrate-grown cells promotes a clear short-term inactivation of glutamine synthetase, whose enzyme activity decreases to 5 to 10% of the initial value in 25 min. The intracellular levels of glutamine, determined under various conditions, taken together with the results obtained with azaserine (an inhibitor of transamidases), rule out the possibility that glutamine per se is responsible for glutamine synthetase inactivation. Nitrogen starvation attenuates the ammonium-mediated glutamine synthetase inactivation, indicating that glutamine synthetase regulation is modulated through the internal balance between carbon-nitrogen compounds and carbon compounds. The parallelism observed between the glutamine synthetase activity and the internal concentration of alpha-ketoglutarate suggests that this metabolite could play a role as a positive effector of glutamine synthetase activity in Synechocystis sp. Despite the similarities of this physiological system to that described for enterobacteria, the lack of in vivo 32P labeling of glutamine synthetase during the inactivation process excludes the existence of an adenylylation-deadenylylation system in this cyanobacterium.  相似文献   

13.
Glutamine synthetase could be repressed several hundredfold rather than 6- to 10-fold as previously reported. Ammonia was not the primary repression signal for glutamine synthetase. Repression appeared to be mediated by a high level of glutamine and probably by a high ratio of glutamine to alpha-ketoglutarate. Mutations in glnA (the structural gene for glutamine synthetase) were seen to fall into three phenotypic groups: glutamine auxotrophs that produced no detectable glnA product; glutamine auxotrophs that produced a glnA product lacking enzymatic activity (and hence repressibility by ammonia) but were repressible under appropriate conditions; and glutamine synthetase regulatory mutants, whose glnA product was enzymatically active and not repressible under any conditions.  相似文献   

14.
林肯链霉菌谷氨酰胺合成酶活力调节的研究   总被引:1,自引:0,他引:1  
对不同氮源生长条件下林肯链霉菌无细胞粗提液中谷氨酰胺合成酶 (GS)的研究结果表明 ,高浓度NH+4阻遏了GS的生物合成。从不同氮源生长条件下林肯链霉菌中分离纯化了GS ,其性质没有差别。以受腺苷化调节的产气克雷伯氏菌GS作对照 ,林肯链霉菌GS没有明显的氨休克作用 ,经蛇毒磷酸二酯酶处理后 ,其活力没有变化。这些结果都说明林肯链霉菌GS不存在腺苷化共价修饰这一调节方式。反馈抑制作用是林肯链霉菌GS的一种重要的调节方式 ,这种抑制作用是以累积的方式进行的 ,这表明各种抑制剂对GS作用位点不同 ,各种抑制剂对GS的抑制作用是相互独立的。由此推测 ,林肯链霉菌GS是一种变构酶。  相似文献   

15.
Abstract The uptake of arginine and proline and their assimilation as nitrogen source have been studied in the cyanobacterium Anabaena cycadeae and its glutamine auxotropic mutant lacking glutamine synthetase activity. The uptake pattern of arginine and proline was found to be biphasic in both wild-type and mutant strains, consisting of an initial fast phase lasting up to 60 s followed by a slower second phase. The uptake activities of both the amino acids were also found to be similar in both the strains. The wild-type strain, having normal glutamine synthetase activity, utilized arginine and proline as sole nitrogen source, whereas the mutant strain lacking glutamine synthetase activity could not do so. These results suggest that: (1) glutamine synthetase activity is necessarily required for the assimilation of arginine and proline as nitrogen source, but it is not required for the uptake of these amino acids; and (2) glutamine synthetase serves as the sole ammonia-assimilating enzyme as well as glutamine-forming route in heterocystous cyanobacteria.  相似文献   

16.
Strain SF22, a glutamine-requiring (Gln-) mutant of Bacillus subtilis SMY, is likely to have a mutation in the structural gene for glutamine synthetase, since this strain synthesized 22 to 55% as much glutamine synthetase antigen as did wild-type cells in a 10-min period but had less than 3% of wild-type glutamine synthetase enzymatic activity. The expression of several genes subject to glucose catabolite repression was altered in the Gln- mutant. The induced levels of alpha-glucosidase, histidase, and aconitase were 3.5- to 4-fold higher in SF22 cells than in wild-type cells grown in glucose-glutamine medium, and citrate synthase levels were 8-fold higher in the Gln- mutant than in wild-type cells. The relief of glucose catabolite repression in the Gln- mutant may result from poor utilization of glucose. Examination of the intracellular metabolite pools of cells grown in glucose-glutamine medium showed that the glucose-6-phosphate pool was 2.5-fold lower, the pyruvate pool was 4-fold lower, and the 2-ketoglutarate pool was 2.5-fold lower in the Gln- cells than they were in wild-type cells. Intracellular levels of glutamine were sixfold higher in the Gln- mutant than in wild-type cells. Measurements of enzymes involved in glutamine transport and utilization showed that the elevated pools of glutamine in the Gln- mutant resulted from a threefold increase in glutamine permease and a fivefold decrease in glutamate synthase. The pleiotropic effect of the gln-22 mutation on the expression of several genes suggests that either the glutamine synthetase protein or its enzymatic product, glutamine, is involved in the regulation of several metabolic pathways in B. subtilis.  相似文献   

17.
Methionine sulfoximine (MSX), an irreversible inhibitor of glutamine synthetase of Rhodopseudomonas palustris restored nitrogenase activity to cells in which nitrogenase had been completely inhibited by ammonia switch-off. After addition of MSX, there was a lag period before nitrogenase activity was fully restored. During this lag, glutamine synthetase activity progressively decreased, and near the time of its complete inhibition, nitrogenase activity resumed. Nitrogenase switch-off by ammonia thus required active glutamine synthetase. Glutamine itself caused nitrogenase inhibition whose reversal by MSX depended on the relative ratio of MSX to glutamine. Unlike ammonia, glutamine inhibited nitrogenase under conditions where glutamine synthetase activity was absent. This indicates that glutamine is the effector molecule in nitrogenase switch-off, for instance by interacting with the enzymatic system for Fe protein inactivation. The effects of glutamine and MSX were also dependent on the culture age. Possible explanation for this and for the competitive effects are a common binding site within the regulatory apparatus for nitrogenase, or, in part, within a common transport system. Some observations with MSX were extended to Rhodopseudomonas capsulata and agreed with those in R. palustris.  相似文献   

18.
为提高烟酰胺腺嘌呤二核苷酸(NAD)激酶的稳定性,采用复合膜对NAD激酶进行固定化研究。选用聚乙烯醇(PVA)、聚乳酸(PLA)、海藻酸钠(SA)和明胶(GEL)膜材料固定化NAD激酶。通过单因素实验确定最佳固定化条件为:PVA∶GEL为4∶1,加酶量为0.6 mL,固定化时间为6h,固定化温度为35℃,此时酶活力回收率达到最高值84%。固定化酶酶学性质分析结果表明,与游离酶进行比较,固定化后NAD激酶的最适温度由50℃提高至55℃,最适pH由8.0降至7.0,NAD激酶的热稳定性和pH稳定性均得到显著提高,但固定化酶的亲和力降低。固定化NAD激酶重复利用6次后,酶活性依然可维持初始酶活性的75%以上,表明聚乙烯醇-明胶复合膜固定化酶具有良好的操作稳定性。  相似文献   

19.
The glutamine synthetase from Bacillus licheniformis A5 was purified by using a combination of polyethylene glycol precipitation and chromatography on Bio-Gel A 1.5m. The resulting preparation was judged to be homogeneous by the criteria of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, equilibrium analytical ultracentrifugation, and electron microscopic analysis. The enzyme is a dodecamer with a molecular weight of approximately 616,000, and its subunit molecular weight is 51,000. Under optimal assay conditions (pH 6.6, 37 degrees C) apparent Km values for glutamate, ammonia, and manganese.adenosine 5'-triphosphate (1:1 ratio) were 3.6, 0.4, and 0.9 mM, respectively. Glutamine synthetase activity was inhibited approximately 50% by the addition of 5 mM glutamine, alanine, glycine, serine, alpha-ketoglutarate, carbamyl phosphate, adenosine 5'-diphosphate, or inosine 5'-triphosphate to the standard glutamine synthetase assay system, whereas 5 mM adenosine 5'-monophosphate or pyrophosphate caused approximately 90% inhibition of enzyme activity. Phosphorylribosyl pyrophosphate at 5 mM enhanced activity approximately 60%. We were unable to detect any physical or kinetic differences in the properties of the enzyme when it was purified from cells grown in the presence of ammonia or nitrate as sole nitrogen source. The data indicate that B. licheniformis A5 contains one species of glutamine synthetase whose catalytic activity is not regulated by a covalent modification system.  相似文献   

20.
A L-methionine- D, L-sulfoximine-resistant mutant of the cyanobacterium Anabaena variabilis, strain SA1, excreted the ammonium ion generated from N(2) reduction. In order to determine the biochemical basis for the NH(4)(+)-excretion phenotype, glutamine synthetase (GS) was purified from both the parent strain SA0 and from the mutant. GS from strain SA0 (SA0-GS) had a pH optimum of 7.5, while the pH optimum for GS from strain SA1 (SA1-GS) was 6.8. SA1-GS required Mn(+2) for optimum activity, while SA0-GS was Mg(+2) dependent. SA0-GS had the following apparent K(m) values at pH 7.5: glutamate, 1.7 m M; NH(4)(+), 0.015 m M; ATP, 0.13 m M. The apparent K(m) for substrates was significantly higher for SA1-GS at its optimum pH (glutamate, 9.2 m M; NH(4)(+), 12.4 m M; ATP, 0.17 m M). The amino acids alanine, aspartate, cystine, glycine, and serine inhibited SA1-GS less severely than the SA0-GS. The nucleotide sequences of glnA (encoding glutamine synthetase) from strains SA0 and SA1 were identical except for a single nucleotide substitution that resulted in a Y183C mutation in SA1-GS. The kinetic properties of SA1-GS isolated from E. coli or Klebsiella oxytoca glnA mutants carrying the A. variabilis SA1 glnA gene were also similar to SA1-GS isolated from A. variabilis strain SA1. These results show that the NH(4)(+)-excretion phenotype of A. variabilis strain SA1 is a direct consequence of structural changes in SA1-GS induced by the Y183C mutation, which elevated the K(m) values for NH(4)(+) and glutamate, and thus limited the assimilation of NH(4)(+) generated by N(2) reduction. These properties and the altered divalent cation-mediated stability of A. variabilis SA1-GS demonstrate the importance of Y183 for NH(4)(+) binding and metal ion coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号