首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of cardiac biopsies suggest that myocardial beta1-adrenoceptor (AR) density is reduced in patients with chronic heart failure, while changes in cardiac beta2-ARs vary. A technique for visualization and quantification of beta1-AR populations rather than total beta-AR densities in the human heart would be of great clinical interest. Molecular imaging techniques, either single photon emission computed tomography (SPECT) or positron emission tomography (PET), with appropriate radiopharmaceuticals offer the possibility to assess beta-AR density noninvasively in humans, but to date, neither a SPECT nor a PET-radioligand is clinically established for the selective imaging of cardiac beta1-ARs. The aim of this study was to design a high affinity selective beta1-AR radioligand for the noninvasive in vivo imaging of cardiac beta1-AR density in man using SPECT. Based on the well-known selective beta1-AR antagonist, ICI 89,406, both the racemic iodinated target compound 11a and the (S)-enantiomer 15a were synthesized. Competition studies using the nonselective AR ligand, [(125)I]iodocyanopindolol ([(125)I]ICYP), and ventricular membrane preparations from mice showed that 11a and 15a possess higher beta1-AR affinities (up to 265-fold) and beta1-AR selectivities (up to 245-fold) than ICI 89,406. Encouraged by these results, the radioiodinated counterparts of racemic 11a (11b: (125)I, 11c: (123)I) and (S)-configurated 15a (15b: (125)I, 15c: (123)I) were synthesized. The target compounds were evaluated in rats. Biodistribution and metabolism studies in rats indicated that there is a specific heart uptake of 11b-c and especially 15b-c accompanied by rapid metabolism of the radioligands. Therefore, radioiodinated 11c and 15c appeared to be unpromising SPECT-radioligands for assessing beta1-ARs in vivo in the rat. However, the rat may metabolize beta-AR ligands more rapidly than other species as demonstrated for (S)-[(11)C]CGP 12177, a radioligand structurally related to 11a-c and 15a-c. Therefore further studies in a different animal model will be carried out.  相似文献   

2.
Two functional alpha(1)-adrenergic receptor (AR) subtypes (alpha(1A) and alpha(1B)) have been identified in the mouse heart. However, it is unclear whether the third known subtype, alpha(1D)-AR, is also present. To investigate this, we determined whether there were alpha(1)-AR responses in hearts from a novel mouse model lacking alpha(1A)- and alpha(1B)-ARs (double knockout) (ABKO). In Langendorff-perfused hearts, alpha(1)-ARs were stimulated with phenylephrine. For ABKO hearts, phenylephrine reduced left ventricular pressure and coronary flow (to 87 +/- 2% and 86 +/- 4% of initial, respectively, n = 11, P < 0.01). These effects were blocked by prazosin and 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-8-azaspirol[4,5]decane-7,9-dione] dihydrochloride, suggesting that alpha(1D)-AR-mediated responses were present. In contrast, right ventricular trabeculae from ABKO hearts did not respond to phenylephrine, suggesting that in ABKO perfused hearts, the effects of phenylephrine were not mediated by direct actions on cardiomyocytes. A novel finding was that alpha(1)-AR stimulation caused positive inotropy in the wild-type mouse heart, in contrast to negative inotropy observed in mouse cardiac muscle strips. We conclude that mouse hearts lacking alpha(1A)- and alpha(1B)-ARs retain functional alpha(1)-AR responses involving decreases of coronary flow and ventricular pressure that reflect alpha(1D)-AR-mediated vasoconstriction. Furthermore, alpha(1)-AR inotropic responses depend critically on the experimental conditions.  相似文献   

3.
The cardiac actions of catecholamines have long been attributed to the predominant beta(1)-AR subtype that couples to the classical Gs/AC/cAMP pathway. Recent research clearly indicates that cardiac beta(2)-ARs play a functional role in healthy heart and assume increasing importance in failing and aged heart. beta(2)-ARs are primarily coupled to an atypical compartmentalized cAMP pathway, regulated by phosphorylation and/or oligomerization of beta(2)-ARs, and under the control of additional beta(2)-AR/Gi-coupled lipidic pathways, the impact of which seems to vary depending on the animal species, the developmental and pathophysiological state. This review focuses, more especially, on one of the last identified beta(2)-AR/Gi pathway, namely the cPLA(2).  相似文献   

4.
Differential modes for beta(1)- and beta(2)-adrenergic receptor (AR) regulation of adenylyl cyclase in cardiomyocytes is most consistent with spatial regulation in microdomains of the plasma membrane. This study examines whether caveolae represent specialized subdomains that concentrate and organize these moieties in cardiomyocytes. Caveolae from quiescent rat ventricular cardiomyocytes are highly enriched in beta(2)-ARs, Galpha(i), protein kinase A RIIalpha subunits, caveolin-3, and flotillins (caveolin functional homologues); beta(1)-ARs, m(2)-muscarinic cholinergic receptors, Galpha(s), and cardiac types V/VI adenylyl cyclase distribute between caveolae and other cell fractions, whereas protein kinase A RIalpha subunits, G protein-coupled receptor kinase-2, and clathrin are largely excluded from caveolae. Cell surface beta(2)-ARs localize to caveolae in cardiomyocytes and cardiac fibroblasts (with markedly different beta(2)-AR expression levels), indicating that the fidelity of beta(2)-AR targeting to caveolae is maintained over a physiologic range of beta(2)-AR expression. In cardiomyocytes, agonist stimulation leads to a marked decline in the abundance of beta(2)-ARs (but not beta(1)-ARs) in caveolae. Other studies show co-immunoprecipitation of cardiomyocytes adenylyl cyclase V/VI and caveolin-3, suggesting their in vivo association. However, caveolin is not required for adenylyl cyclase targeting to low density membranes, since adenylyl cyclase targets to low buoyant density membrane fractions of HEK cells that lack prototypical caveolins. Nevertheless, cholesterol depletion with cyclodextrin augments agonist-stimulated cAMP accumulation, indicating that caveolae function as negative regulators of cAMP accumulation. The inhibitory interaction between caveolae and the cAMP signaling pathway as well as domain-specific differences in the stoichiometry of individual elements in the beta-AR signaling cascade represent important modifiers of cAMP-dependent signaling in the heart.  相似文献   

5.
In this study four and five-feature pharmacophores for selective antagonists at each of the three α(1)-adrenoceptor (AR) subtypes were used to identify novel α(1)-AR subtype selective compounds in the National Cancer Institute and Tripos LeadQuest databases. 12 compounds were selected, based on diversity of structure, predicted high affinity and selectivity at the α(1D)- subtype compared to α(1A)- and α(1B)-ARs. 9 out of 12 of the tested compounds displayed affinity at the α(1A) and α(1D) -AR subtypes and 6 displayed affinity at all three α(1)-AR subtypes, no α(1B)-AR selective compounds were identified. 8 of the 9 compounds with α(1)-AR affinity were antagonists and one compound displayed partial agonist characteristics. This virtual screening has successfully identified an α(1A/D)-AR selective antagonist, with low μM affinity with a novel structural scaffold of a an isoquinoline fused three-ring system and good lead-like qualities ideal for further drug development.  相似文献   

6.
Cardiac-specific overexpression of the human beta(2)-adrenergic receptor (AR) in transgenic mice (TG4) enhances basal cardiac function due to ligand-independent spontaneous beta(2)-AR activation. However, agonist-mediated stimulation of either beta(1)-AR or beta(2)-AR fails to further enhance contractility in TG4 ventricular myocytes. Although the lack of beta(2)-AR response has been ascribed to an efficient coupling of the receptor to pertussis toxin-sensitive G(i) proteins in addition to G(s), the contractile response to beta(1)-AR stimulation by norepinephrine and an alpha(1)-adrenergic antagonist prazosin is not restored by pertussis toxin treatment despite a G(i) protein elevation of 1.7-fold in TG4 hearts. Since beta-adrenergic receptor kinase, betaARK1, activity remains unaltered, the unresponsiveness of beta(1)-AR is not caused by betaARK1-mediated receptor desensitization. In contrast, pre-incubation of cells with anti-adrenergic reagents such as muscarinic receptor agonist, carbachol (10(-5)m), or a beta(2)-AR inverse agonist, ICI 118,551 (5 x 10(-7)m), to abolish spontaneous beta(2)-AR signaling, both reduce the base-line cAMP and contractility and, surprisingly, restore the beta(1)-AR contractile response. The "rescued" contractile response is completely reversed by a beta(1)-AR antagonist, CGP 20712A. Furthermore, these results from the transgenic animals are corroborated by in vitro acute gene manipulation in cultured wild type adult mouse ventricular myocytes. Adenovirus-directed overexpression of the human beta(2)-AR results in elevated base-line cAMP and contraction associated with a marked attenuation of beta(1)-AR response; carbachol pretreatment fully revives the diminished beta(1)-AR contractile response. Thus, we conclude that constitutive beta(2)-AR activation induces a heterologous desensitization of beta(1)-ARs independent of betaARK1 and G(i) proteins; suppression of the constitutive beta(2)-AR signaling by either a beta(2)-AR inverse agonist or stimulation of the muscarinic receptor rescues the beta(1)-ARs from desensitization, permitting agonist-induced contractile response.  相似文献   

7.
Previous studies demonstrated an enhanced beta(2)-adrenoceptor (AR) responsiveness in animals susceptible to ventricular fibrillation (VF) that was eliminated by exercise training. The present study investigated the effects of endurance exercise training on beta(1)-AR and beta(2)-AR expression in dogs susceptible to VF. Myocardial ischemia was induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise in dogs with healed infarctions: 20 had VF [susceptible (S)] and 13 did not [resistant (R)]. These dogs were randomly assigned to either 10-wk exercise training [treadmill running; n = 9 (S) or 8 (R)] or an equivalent sedentary period [n = 11 (S) or 5 (R)]. Left ventricular tissue beta-AR protein and mRNA were quantified by Western blot analysis and RT-PCR, respectively. Because beta(2)-ARs are located in caveolae, caveolin-3 was also quantified. beta(1)-AR gene expression decreased ( approximately 5-fold), beta(2)-AR gene expression was not changed, and the ratio of beta(2)-AR to beta(1)-AR gene expression was significantly increased in susceptible compared with resistant dogs. beta(1)-AR protein decreased ( approximately 50%) and beta(2)-AR protein increased (400%) in noncaveolar fractions of the cell membrane in susceptible dogs. Exercise training returned beta(1)-AR gene expression to levels seen in resistant animals but did not alter beta(2)-AR protein levels in susceptible dogs. These data suggest that beta(1)-AR gene expression was decreased in susceptible dogs compared with resistant dogs and, further, that exercise training improves beta(1)-AR gene expression, thereby restoring a more normal beta-AR balance.  相似文献   

8.
A novel series of heterocycle-based analogs were prepared and evaluated for their in vitro and in vivo biological activity as human beta(3)-adrenergic receptor (AR) agonists. Several analogs demonstrated potent agonist activity at the beta(3)-AR, functional selectivity against beta(1)- and beta(2)-ARs, and favorable pharmacokinetic profiles in vivo. Compound 17 increased oxygen consumption in rats, a measure of energy expenditure, with an ED(20%) of 2mg/kg.  相似文献   

9.
Li YM  Zhang Y  Xiang B  Zhang YY  Wu LL  Yu GY 《Life sciences》2006,79(22):2091-2098
beta-Adrenoceptors (beta-ARs) mediate important physiological functions in salivary glands. Here we investigated the expression and function of beta-AR subtypes in rabbit submandibular gland (SMG). Both beta(1)- and beta(2)-ARs, but not beta(3)-AR, were strongly expressed in rabbit SMG. beta(1)-AR proteins were widely expressed in acinar and ductal cells whereas beta(2)-AR proteins were mainly detected in ductal cells. A [(3)H]-dihydroalprenolol binding assay revealed that beta-AR B(max) was 186+/-11.9 fmol/mg protein and K(d) was 2.71+/-0.23 nM. A competitive binding assay with CGP 20712A, a beta(1)-AR antagonist, indicated that the proportion of beta(1)-AR and beta(2)-AR was 71.9% and 28.1%, respectively. Gland perfusion with the beta-AR agonist isoproterenol induced a significant increase in saliva secretion which was abolished by pretreatment with the non-selective beta-AR antagonist propranolol. Pretreatment with beta(1)- or beta(2)-AR selective antagonists, CGP 20712A or ICI 118551, diminished isoproterenol-induced increase in saliva secretion by 71.2% and 28.8%, respectively. The expression of alpha-amylase mRNA was significantly stimulated by isoproterenol, which was eliminated by propranolol and CGP 20712A. Perfusion with isoproterenol decreased alpha-amylase protein storage in SMG and increased alpha-amylase activity in saliva. These alterations became less significant after pretreatment with propranolol and CGP 20712A. Our results suggest that both beta(1)- and beta(2)-ARs are expressed in rabbit SMG. beta(1)-AR is the predominant subtype and may play an important role in regulating saliva and alpha-amylase secretion.  相似文献   

10.
The cardiac slow delayed rectifier potassium channel (IKs), comprised of (KCNQ1) and beta (KCNE1) subunits, is regulated by sympathetic nervous stimulation, with activation of beta-adrenergic receptors PKA phosphorylating IKs channels. We examined the effects of 2-adrenergic receptors (beta2-AR) on IKs in cardiac ventricular myocytes from transgenic mice expressing fusion proteins of IKs subunits and hbeta2-ARs. KCNQ1 and beta2-ARs were localized to the same subcellular regions, sharing intimate localization within nanometers of each other. In IKs/B2-AR myocytes, IKs density was increased, and activation shifted in the hyperpolarizing direction; IKs was not further modulated by exposure to isoproterenol, and KCNQ1 was found to be PKA-phosphorylated. Conversely, beta2-AR overexpression did not affect L-type calcium channel current (ICaL) under basal conditions with ICaL remaining responsive to cAMP. These data indicate intimate association of KCNQ1 and beta2-ARs and that beta2-AR signaling can modulate the function of IKs channels under conditions of increased beta2-AR expression, even in the absence of exogenous beta-AR agonist.  相似文献   

11.
12.
The characteristics of hepatic beta(2)-adrenoceptors (AR) were examined in rainbow trout (Oncorhynchus mykiss) chased once per day to exhaustion for up to 7 days or fed the repartitioning agents clenbuterol (CLEN) or ractopamine (RACT) that function in mammals as beta-agonists. A one-day chase and feeding the CLEN for 37 days resulted in a significant 27% and 33% decrease, respectively, in the number of CGP-binding sites (B(max)) with no significant change in affinity (Kd) of hepatic beta(2)-ARs. Despite the significant decrease in beta(2)-AR numbers with CLEN feeding, no significant differences were found for either beta(2)-AR mRNA levels or adenylyl cyclase (ACase) activities. In addition, CLEN displayed only partial agonist activities as it was found to be more effective at blocking isoproterenol-stimulated cAMP production in isolated hepatocytes than stimulating cAMP production. The small affects of RACT may be related to its low active stereoisomer content and low affinity for the trout beta(2)-AR. Agonist regulation of the trout hepatic beta(2)-ARs may involve down-regulation of the receptors without affecting responsiveness.  相似文献   

13.
The synthesis and evaluation of a novel series of 1,7-cyclized indole-based human adrenergic receptor (beta3-AR) agonists are reported. The synthesis of a variety of 1,7-cyclized indole part was accomplished by the Mitsunobu reaction or a ring closing metathesis (RCM) reaction. SAR studies revealed that expansion of the ring size resulted in considerable selectivity against the beta1- and beta2-ARs. Compound 26, an eight-membered ring analogue with a double bond on its 1,7-linker portion, was found to be a potent beta3-AR agonist (EC50 = 0.75 nM, IA = 90%) with extremely high selectivity for the beta3-AR over the beta1- and beta2-ARs.  相似文献   

14.
A library of halogenated 2-arylindolyl-3-oxocarboxamides was prepared to develop radioligands to visualize cerebral PBR by SPECT and PET imaging. In vitro evaluation showed that most of the synthesized compounds were selective,high-affinity PBR ligands with adequate lipophilicity (log D7.4 in the range of 1.6-2.4). The iodinated derivative 11 (Ki = 2.6 nM) and the fluorinated analog 26 (Ki = 6.2 nM) displayed higher affinity than reference compounds.  相似文献   

15.
In order to develop radioligands of human NK-3 receptor (hNK-3r) for imaging studies by positron emission tomography (PET) or single photon emission computed tomography (SPECT), a new series of fluoro- and iodo-quinoline carboxamides were synthesized and evaluated in a target receptor binding assay. Compared to the unsubstituted parent compound SB 223 412 (Ki=27 nM +/- 9), affinity was not altered for the analogues 1c and 2c bearing a fluorine in position 8 (Ki approximately 24-27 nM), and was only slightly reduced for compounds 1b, 2b, 1e and 2e fluorinated or iodinated at the position 7 (Ki approximately 49-67 nM). A drastic reduction in binding (Ki > 115 nM) was observed for all other halogenated compounds 1a, 2a, 1d, 2d, 1f and 2f.  相似文献   

16.
In the heart, catecholamine effects occur by activation of beta-adrenergic receptors (β-ARs), mainly the beta 1 (β1-AR) and beta 2 (β2-AR) subtypes, both of which couple to the Gs protein that activates the adenylyl cyclase signaling pathway. The β2-ARs can also couple to the Gi protein that counterbalances the effect of the Gs protein on cyclic adenosine monophosphate production and activates the phosphatidylinositol 3-kinase (PI3K)–Akt signaling pathway. In several cardiovascular disorders, including heart failure, as well as in aging and in animal models of environmental stress, a reduction in the β12-AR ratio and activation of the β2-AR-Gi-PI3K–Akt signaling pathway have been observed. Recent studies have shown that sirtuins modulate certain organic processes, including the cellular stress response, through activation of the PI3K–Akt signaling pathway and of downstream molecules such as p53, Akt, HIF1-α, and nuclear factor-kappa B. In the heart, SIRT1, SIRT3, and β2-ARs are crucial to the regulation of the cardiomyocyte energy metabolism, oxidative stress, reactive oxygen species production, and autophagy. SIRT1 and the β2-AR-Gi complex also control signaling pathways of cell survival and death. Here, we review the role played by β2-ARs and sirtuins during aging, heart failure, and adaptation to stress, focusing on the putative interplay between the two. That relationship, if proven, merits further investigation in the context of cardiac function and dysfunction.  相似文献   

17.
In atrial myocytes, an initial exposure to isoproterenol (ISO) acts via cAMP to mediate a subsequent acetylcholine (ACh)-induced activation of ATP-sensitive K(+) current (I(K,ATP)). In addition, beta-adrenergic receptor (beta-AR) stimulation activates nitric oxide (NO) release. The present study determined whether the conditioning effect of beta-AR stimulation acts via beta(1)- and/or beta(2)-ARs and whether it is mediated via NO signaling. 0.1 microM ISO plus ICI 118,551 (ISO-beta(1)-AR stimulation) or ISO plus atenolol (ISO-beta(2)-AR stimulation) both increased L-type Ca(2+) current (I(Ca,L)) markedly, but only ISO-beta(2)-AR stimulation mediated ACh-induced activation of I(K,ATP). 1 microM zinterol (beta(2)-AR agonist) also increased I(Ca,L) and mediated ACh-activated I(K,ATP). Inhibition of NO synthase (10 microM L-NIO), guanylate cyclase (10 microM ODQ), or cAMP-PKA (50 microM Rp-cAMPs) attenuated zinterol-induced stimulation of I(Ca,L) and abolished ACh-activated I(K,ATP). Spermine-NO (100 microM; an NO donor) mimicked beta(2)-AR stimulation, and its effects were abolished by Rp-cAMPs. Intracellular dialysis of 20 microM protein kinase inhibitory peptide (PKI) abolished zinterol-induced stimulation of I(Ca,L). Measurements of intracellular NO ([NO](i)) using the fluorescent indicator DAF-2 showed that ISO-beta(2)-AR stimulation or zinterol increased [NO](i). L-NIO (10 microM) blocked ISO- and zinterol-induced increases in [NO](i). ISO-beta(1)-AR stimulation failed to increase [NO](i). Inhibition of G(i)-protein by pertussis toxin significantly inhibited zinterol-mediated increases in [NO](i). Wortmannin (0.2 microM) or LY294002 (10 microM), inhibitors of phosphatidylinositol 3'-kinase (PI-3K), abolished the effects of zinterol to both mediate ACh-activated I(K,ATP) and stimulate [NO](i). We conclude that both beta(1)- and beta(2)-ARs stimulate cAMP. beta(2)-ARs act via two signaling pathways to stimulate cAMP, one of which is mediated via G(i)-protein and PI-3K coupled to NO-cGMP signaling. Only beta(2)-ARs acting exclusively via NO signaling mediate ACh-induced activation of I(K,ATP). NO signaling also contributes to beta(2)-AR stimulation of I(Ca,L). The differential effects of beta(1)- and beta(2)-ARs can be explained by the coupling of these two beta-ARs to different effector signaling pathways.  相似文献   

18.
The activation state of beta-adrenergic receptors (beta-ARs) in vivo is an important determinant of hemodynamic status, cardiac performance, and metabolic rate. In order to achieve homeostasis in vivo, the cellular signals generated by beta-AR activation are integrated with signals from a number of other distinct receptors and signaling pathways. We have utilized genetic knockout models to test directly the role of beta1- and/or beta2-AR expression on these homeostatic control mechanisms. Despite total absence of beta1- and beta2-ARs, the predominant cardiovascular beta-adrenergic subtypes, basal heart rate, blood pressure, and metabolic rate do not differ from wild type controls. However, stimulation of beta-AR function by beta-AR agonists or exercise reveals significant impairments in chronotropic range, vascular reactivity, and metabolic rate. Surprisingly, the blunted chronotropic and metabolic response to exercise seen in beta1/beta2-AR double knockouts fails to impact maximal exercise capacity. Integrating the results from single beta1- and beta2-AR knockouts as well as the beta1-/beta2-AR double knock-out suggest that in the mouse, beta-AR stimulation of cardiac inotropy and chronotropy is mediated almost exclusively by the beta1-AR, whereas vascular relaxation and metabolic rate are controlled by all three beta-ARs (beta1-, beta2-, and beta3-AR). Compensatory alterations in cardiac muscarinic receptor density and vascular beta3-AR responsiveness are also observed in beta1-/beta2-AR double knockouts. In addition to its ability to define beta-AR subtype-specific functions, this genetic approach is also useful in identifying adaptive alterations that serve to maintain critical physiological setpoints such as heart rate, blood pressure, and metabolic rate when cellular signaling mechanisms are perturbed.  相似文献   

19.
20.
It has been suggested that there is a preferential coupling in heart muscle between the inhibitory G protein (G(i)) and the beta(2)-subtype of the beta-adrenergic receptor (beta-AR), since pertussis toxin (which inactivates G(i)) reveals latent beta(2)-ARs in rat and mouse myocytes. We have previously shown that guinea pigs treated with norepinephrine (NE) for 7 days have myocytes that are desensitized to beta-AR-agonist stimulation, and that pertussis toxin restores these responses. The purpose of the present investigation was to determine whether pertussis toxin specifically upregulated beta(2)-ARs in myocytes from NE-treated guinea pigs. The sole beta-AR subtype in control guinea pig myocytes was confirmed as beta(1)-AR by radioligand binding, single-cell autoradiography, and concentration-response curves to isoproterenol in contracting myocytes. In contrast, a minor pool of beta(2)-ARs was observed in rat myocytes by use of the same methods. NE treatment decreased the maximum isoproterenol response (relative to high Ca(2+)) from 0.89 +/- 0.06 to 0.58 +/- 0.08 (n = 7, P < 0.01) and the pD(2) (-log EC(50)) from 8.8 +/- 0.2 to 7.5 +/- 0.2 (n = 7, P < 0.01). Pertussis toxin treatment increased the isoproterenol-to-Ca(2+) ratio to 0.88 +/- 0.04 (n = 6, P < 0.05) and the pD(2) to 8.6 +/- 0.3 (P < 0.01). This was not mediated by increases in either number or function of beta(2)-ARs. G(i) is therefore able to modulate beta(1)-AR responses in guinea pig myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号