首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave measurements at Margarita Reef in southwestern Puerto Rico show that wave height decreases as waves travel across the forereef and into the backreef. Wave spectra reveal the presence of two wave trains impinging on the reef during the study: trade-wind waves and locally generated seas. Significant wave height calculated from the spectra show an average reduction of 19.5% from 20- to 10-m isobaths and 26% from 20- to 5-m isobaths. The significant wave height decreases an average of 82% for waves traveling across the reef crest and into the backreef. Wave-energy reduction is 35% from 20- to 10-m isobaths and 45% from 20- to 5-m isobaths. Energy loss across the reef crest is 97% which translates into the formation of strong across-the-reef currents capable of moving coarse sediment. Refraction diagrams of waves impinging on the reef from the SE provide a display of wave energy distribution around the reef. The transmission coefficients calculated for trade-wind waves and locally generated seas have means of 18% and 39%, respectively. A wave height model with negligible energy dissipation, produces wave height estimates that are, in general, within the ±15% error bands. Results of wave-energy changes from this study were applied to waves representative of hurricane conditions at the reef. Aerial photographs of the reef before and after the passage of hurricanes were compared to assess the reef changes. Changes observed in the photographs are interpreted as products of sediment transport by hurricane-generated waves. The patterns of change agree with the refraction diagrams suggesting that waves were the main agents of change at margarita Reef during severe storms. Correspondence to: A. Lugo-Fernández}  相似文献   

2.
1. An experimental approach, manually pollinating all the flowers of individual plants, was used to measure the effect of pollen limitation on female fecundity of the hummingbird-pollinated perennial shrub Echeveria gibbiflora in the ecological preserve of Pedregal de San Angel around México City, México. Eleven randomly selected plants were manually over-pollinated in all their flowers and another 11 were left to be freely visited by natural pollinators.
2. Manually pollinated plants produced significantly more fruit and seeds than control plants (1·38 and 1·74 times, respectively). There was no change in average mass of fruits.
3. Considering individual fruit production per plant sampled three times in one season, decreases in fruit mass and average seeds per fruit were observed within the same reproductive season for both treatments. For the manually pollinated plants, from the start to the end of the reproductive season, seed set decreased 55·9%; while in control plants seed set decreased 33·4% in the same period. For both treatments, average fruit mass decreased 26%.
4. Vegetative growth was not significantly different between control and experimental plants but hand-pollinated plants showed a smaller reproduction probability for the following year.
5. It is concluded that female fecundity in E. gibbiflora is limited by pollen early in the reproductive season and by resources in the middle and the end of the season.  相似文献   

3.
Extension growth of willow (Salix viminalis L.) and changes in soil water were measured in lysimeters containing clay and sandy loam soils with different amendment and watering treatments. No water uptake was found below 0.3 m in the nutritionally poor unamended clay; amendment with organic matter to 0.4 m depth resulted in water extraction down to 0.5 m depth whereas in the sandy loam, there was greater extraction from all depths down to 0.6 m. With water stress, wilting of plants occurred when the volumetric soil water content at 0.1 m was about 31% in the clay and 22% in the sandy loam. Compared with shoots on plants in the amended clay, those in the unamended treatment showed reduced extension growth, little increase in stem basal area (SBA) and a small shoot leaf area, resulting from a reduced number of leaves shoot−1 and a small average area leaf−1. Water stress also reduced shoot extension growth, SBA gain and the leaf area on extension growth. Shoot growth rates were significantly correlated with air temperature and base temperatures between 2.0 and 7.6 °C were indicated for the different treatments. These studies have helped to explain some of the large treatment effects described previously on biomass production and plant leaf area.  相似文献   

4.
Influence of pre-sowing magnetic treatments on plant growth and final yield of lettuce (cv. Black Seeded Simpson) were studied under organoponic conditions. Lettuce seeds were exposed to full-wave rectified sinusoidal non uniform magnetic fields (MFs) induced by an electromagnet at 120 mT (rms) for 3 min, 160 mT (rms) for 1 min, and 160 mT (rms) for 5 min. Non treated seeds were considered as controls. Plants were grown in experimental stonemasons (25.2 m(2)) of an organoponic and cultivated according to standard agricultural practices. During nursery and vegetative growth stages, samples were collected at regular intervals for growth analyses. At physiological maturity, the plants were harvested from each stonemason and the final yield and yield parameters were determined. In the nursery stage, the magnetic treatments induced a significant increase of root length and shoot height in plants derived from magnetically treated seeds. In the vegetative stage, the relative growth rates of plants derived from magnetically exposed seeds were greater than those shown by the control plants. At maturity stage, all magnetic treatments increased significantly (p < 0.05)--plant height, leaf area per plant, final yield per area, and fresh mass per plant--in comparison with the controls. Pre-sowing magnetic treatments would enhance the growth and final yield of lettuce crop.  相似文献   

5.
The effects of Al, Cd and pH on growth, photosynthesis, malondialdehyde (MDA) content, and some antioxidant enzyme activities of the two soybean cultivars with different Al tolerance were determined using a hydroponic culture. There were six treatments as follows: pH 6.5; pH 4.0; pH 6.5 + 1.0 μM Cd; pH 4.0 + 1.0 μM Cd; pH 4.0 + 150 μM Al; pH 4.0 + 1.0 μM Cd + 150 μM Al. The results showed that the low pH (4.0) and Al treatments caused marked reduction in the growth (root and shoot length and dry mass), chlorophyll content (SPAD value) and net photosynthetic rate. Higher malondialdehyde content, superoxide dismutase (SOD) and peroxidase (POD) activities were detected in the plants exposed to both Al and Cd than in those exposed to Al treatment alone. An expressive enhancement of SOD and POD was observed in the plants exposed to 150 μM Al in the comparison with the control plants, especially in Al-sensitive cv. Zhechun 2 which had also significantly higher Al and Cd content than Al tolerant cv. Liao-1. Cd addition increased Al content in the plants exposed to Al + Cd stress, and cv. Zhechun 2 had relatively lower Al content. The present research indicated that Al and Cd are synergistic in their effects on plant growth and some physiological traits.  相似文献   

6.
The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2] (380 or 700 μmol CO2 mol?1) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4‐week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2] and well‐watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2]. Low soil moisture significantly decreased net photosynthesis (Anet) and biomass in all [CO2] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2]. Although this reduction was relatively greater under elevated [CO2], Anet values during this heat wave were still 34% higher than under ambient [CO2]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2] and soil moisture conditions.  相似文献   

7.
We maintained pregnant Sphenomorphus indicus under four thermal conditions for the whole gestation period to assess the effects of gestation temperature on offspring phenotypes. Parturition occurred between late June and early August, with females at high body temperatures giving birth earlier than those maintained at low body temperatures. Litter size, litter mass, and postpartum body mass did not differ among treatments, and females with relatively higher fecundity produced smaller offspring. Females gave birth to predominantly female offspring (85.7% of the 14 sexed offspring were females) at 24 °C and to predominantly male offspring (76.5% of the 17 sexed offspring were males) at 28 °C. Females with the opportunity to regulate body temperature produced a mix of sexes that did not differ from equality. Offspring produced in different treatments differed in head size, hind-limb length, and tympanum length, but not in snout-vent length, tail length, body mass, fore-limb length, and eye length. Offspring produced at 28 °C were not only smaller in head size, but also shorter in hind-limb length and tympanum length than those offspring produced at lower temperatures. Offspring produced at 28 °C performed more poorly in the racetrack and grew more slowly than offspring produced in the other three treatments. Taken together, our results show that S. indicus might be a temperature-dependent sex determination species and that offspring phenotypes are impaired at high gestation temperatures but maximized at relatively low gestation temperatures.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 453–463.  相似文献   

8.
Female plants of the moss Syntrichia caninervis are more common than male plants and are found in more thermally stressful habitats than male plants. We hypothesized that this distribution pattern is due to a more favorable regeneration response of females to thermal stress compared to that of males. Hydrated leaves from four genotypes of both sexes of S. caninervis were exposed for 60 min under lighted conditions to temperatures of 20, 30, 35, 40, and 45°C. Leaves were allowed to regenerate on native sand under recovery conditions (12-h photoperiod, 20°C lighted, and 8°C dark) for 56 days, and over this period, protonemal emergence, growth rate, and shoot production were assessed. Leaves exposed to higher heat shocks produced protonemata significantly later, exhibited significantly reduced growth rates over the course of the experiment, and produced fewer shoots but did not differ in the probability of producing a shoot. Males tended to produce protonemata earlier than females at the highest thermal stress, whereas females tended to produce protonemata earlier under control conditions. Female leaves regenerated at twice the rate of male leaves, producing twice the area of protonemal cover; this gender difference was lessened at the highest thermal stress. Female leaves regenerated significantly more shoots than males, with each sex exhibiting different peaks of shoot production depending on the thermal stress. No interaction effect was detectable between gender and stress treatment. While females had a more favorable regeneration response relative to males, thermal stress diminished this difference, thus suggesting that our hypothesis was not supported.  相似文献   

9.
Plants of the fern Matteuccia struthiopteris from northern and southern populations in Norway were studied in a phytotron. Relative growth rate (RGR), growth period, and sporophyll production were measured under different photoperiod (12–24 h) day-length and temperature (9–21 °C) treatments. For the southern plants, there were no significant differences between the different light treatments, but for the northern plants there was a significant (p<0.01) linear increase in the mean maximum RGR with increasing day-length. Small, but statistically significant (p<0.01) differences were found between northern and southern plants when the mean maximum RGR-values were compared. When plants from different origin were exposed to different treatment, there were major differences between the populations in the production of sporophylls (p<0.0001). Southern plants produced in average three times more sporophylls than the northern plants, and they had also higher proportions of fertile plants. Diurnal alternating temperature treatments gave no significant (p>0.05) effect on the mean maximum RGR compared with constant temperatures, but they gave significantly higher production of sporophylls. In general, the northern plants had a higher temperature threshold (approximately 12 °C) for sporophyll production than the southern plants (approximately 9 °C). Plants exposed to 24 h with natural light were generally more often fertile than plants exposed to a shorter photoperiod. The mean maximum RGR-values and time needed to develop the fronds at the 9 °C treatment were fairly equal to those found under natural conditions close to the altitudinal distribution limit of M.struthiopteris in W Norway. In general, the investigation showed that the applied temperature and light treatments affected sporophyll production more than vegetative growth.  相似文献   

10.
Scots pine (Pinus sylvestris L., Pinaceae) produces a terpenoid resin which consists of monoterpenes and resin acids that offer protection against herbivores and pathogen attacks. Methyl jasmonate (MJ) is a potential plant elicitor which induces a wide range of chemical and anatomical defence reactions in conifers and might be used to increase resistance against biotic damage. Different amounts of MJ (control, 10 mm , and 100 mm ) were applied to Scots pine to examine the vigour, physiology, herbivory performance, and induction of secondary compound production in needles, bark, and xylem of 2‐year‐old Scots pine seedlings. Growth decreased significantly in both MJ treated plants, and photosynthesis decreased in the 100 mm MJ treated plants, when compared to 10 mm MJ or control plants. The large pine weevil (Hylobius abietis L.) (Coleoptera: Curculionidae) gnawed a significantly smaller area of stem bark in the 100 mm treated plants than in the control or 10 mm treated plants. The 100 mm MJ treatment increased the resin acid concentration in the needles and xylem but not in the bark. Furthermore, both MJ treatments increased the number of resin ducts in newly developing xylem. The changes in plant growth and chemical parameters after the MJ treatments indicate shifts in carbon allocation, but MJ also affects plant physiology and xylem development. Terpenoid resin production was tissue‐specific, but generally increased after MJ treatments, which means that this compound may offer potential protection of conifers against herbivores.  相似文献   

11.
The Hsp100/ClpB heat shock protein family is ancient and required for high temperature survival, but natural variation in expression and its phenotypic effects is unexplored in plants. In controlled environment experiments, we examined the effects of variation in the Arabidopsis cytosolic AtHsp101 (hereafter Hsp101). Ten wild-collected ecotypes differed in Hsp101 expression responses across a 22 to 40 °C gradient. Genotypes from low latitudes expressed the least Hsp101. We tested fitness and pleiotropic consequences of varying Hsp101 expression in 'control' vs. mild thermal stress treatments (15/25 °C D/N vs. 15/25° D/N plus 3 h at 35 °C 3 days/week). Comparing wild type and null mutants, wt Columbia (Col) produced ~33% more fruits compared to its Hsp101 homozygous null mutant. There was no difference between Landsberg erecta null mutant NIL (Ler) and wt Ler; wt Ler showed very low Hsp101 expression. In an assay of six genotypes, fecundity was a saturating function of Hsp101 content, in both experimental treatments. Thus, in addition to its essential role in acquired thermal tolerance, Hsp101 provides a substantial fitness benefit under normal growth conditions. Knocking out Hsp101 decreased fruit production, days to germination and days to bolting, total dry mass, and number of inflorescences; it increased transpiration rate and allocation to root mass. Root : total mass ratio decayed exponentially with Hsp101 content. This study shows that Hsp101 expression is evolvable in natural populations. Our results further suggest that Hsp101 is primarily an emergency high-temperature tolerance mechanism, since expression levels are lower in low-latitude populations from warmer climates. Hsp101 expression appears to carry an important trade-off in reduced root growth. This trade-off may select for suppressed expression under chronically high temperatures.  相似文献   

12.
Phenotypic differences among populations of the same species reflect selective responses to ecological gradients produced by variations in abiotic and biotic factors. Moreover, they can also originate from genetic differences among populations, due to a reduced gene flow. In this study, we examined the extent of differences in photo‐acclimative traits of Posidonia oceanica (L.) Delile clones collected above and below the summer thermocline (i.e., ?5 and ?25 m) in a continuous population extending along the water depth gradient. During a reciprocal light exposure and subsequent recovery in mesocosms, we assessed degree of phenotypic plasticity and local adaptation of plants collected at different depths, by measuring changes in several traits, such as gene expression of target genes, photo‐physiological features, and other fitness‐related traits (i.e., plant morphology, growth, and mortality rates). Samples were also genotyped, using microsatellite markers, in order to evaluate the genetic divergence among plants of the two depths. Measures collected during the study have shown a various degree of phenotypic changes among traits and experimental groups, the amount of phenotypic changes observed was also dependent on the type of light environments considered. Overall plants collected at different depths seem to be able to acclimate to reciprocal light conditions in the experimental time frame, through morphological changes and phenotypic buffering, supported by the plastic regulation of a reduced number of genes. Multivariate analyses indicated that plants cluster better on the base of their depth origin rather than the experimental light conditions applied. The two groups were genetically distinct, but the patterns of phenotypic divergence observed during the experiment support the hypothesis that ecological selection can play a role in the adaptive divergence of P. oceanica clones along the depth gradient.  相似文献   

13.
沙埋对西鄂尔多斯珍稀植物种子萌发和幼苗出土的影响   总被引:2,自引:1,他引:1  
采用不同沙埋深度(0、1、2、3、5、7、10 cm埋深)处理,对内蒙古西鄂尔多斯4种珍稀植物霸王(Zygophyllum xanthoxylum)、沙冬青(Ammopiptanthus mongolica)、蒙古扁桃(Prunus mongolica)和长叶红砂(Reaumuria trigyna)种子萌发及幼苗出土情况进行研究,以揭示其种子萌发特性.结果表明:表层沙土(0 cm埋深)的种子几乎不萌发;除霸王外,其他3种植物在不同沙埋深度处理下的种子萌发率差异显著(P<0.05);沙埋对4种珍稀植物的幼苗出土均有显著影响,出苗率随着沙埋深度的增加而降低,且遵循指数方程.霸王在2 cm沙埋深度的出苗率最高,其他物种在1 cm沙埋深度的出苗率最高.沙埋深度对幼苗生物量的影响不显著.  相似文献   

14.
An experiment was conducted in sunlit controlled environment growth chambers to determine the physiological mechanisms of fruit abscission of cotton ( Gossypium hirsutum L. cv. NuCOTN 33B) grown in high temperature and enhanced ultraviolet (UV)-B radiation. Six treatments included two levels of optimum (30/22°C) and high (36/28°C) day/night temperatures and three levels of biologically effective UV-B radiation (0, 7, and 14 kJ m−2 per day). Both the temperature and UV-B treatments were imposed from seedling emergence through 79 days after emergence (DAE). High temperature did not negatively affect either leaf net photosynthetic rates (Pn) or abscission of cotton squares (floral buds with bracts) but significantly decreased boll retention. Plants exposed to 7 kJ UV-B radiation retained 56% less bolls than the 0 kJ UV-B control plants at 79 DAE, despite no significant differences in leaf Pn measured at squaring and flowering. At 53 DAE, leaf Pn of plants grown in high UV-B radiation (14 kJ m−2 per day) decreased by 11%, whereas total non-structural carbohydrate (TNC) concentrations in the leaves, floral buds, and young bolls decreased by 34, 32, and 20%, respectively, compared with the control plants. The high UV-B radiation significantly increased square abscission. Square abscission was not related to leaf TNC concentration but closely correlated with TNC in floral buds ( r  = −0.68, P  < 0.001). Young boll abscission was highly correlated with TNC concentrations in both the leaves ( r  = −0.40, P  < 0.01) and the bolls ( r  = −0.80, P  < 0.001). Our results indicate that non-structural carbohydrate limitation in reproductive parts was a major factor associated with fruit abscission of cotton grown under high temperature and enhanced UV-B radiation conditions.  相似文献   

15.
The effects of pre-sowing magnetic treatments on growth and yield of tomato (cv Campbell-28) were investigated under field conditions. Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 100 mT (rms) for 10 min and at 170 mT (rms) for 3 min. Non-treated seeds were considered as controls. Plants were grown in experimental plots (30.2 m(2)) and were cultivated according to standard agricultural practices. During the vegetative and generative growth stages, samples were collected at regular intervals for growth rate analyses, and the resistance of plants to geminivirus and early blight was evaluated. At physiological maturity, the plants were harvested from each plot and the yield and yield parameters were determined. In the vegetative stage, the treatments led to a significant increase in leaf area, leaf dry weight, and specific leaf area (SLA) per plant. Also, the leaf, stem, and root relative growth rates of plants derived from magnetically treated seeds were greater than those shown by the control plants. In the generative stage, leaf area per plant and relative growth rates of fruits from plants from magnetically exposed seeds were greater than those of the control plant fruits. At fruit maturity stage, all magnetic treatments increased significantly (P < .05) the mean fruit weight, the fruit yield per plant, the fruit yield per area, and the equatorial diameter of fruits in comparison with the controls. At the end of the experiment, total dry matter was significantly higher for plants from magnetically treated seeds than that of the controls. A significant delay in the appearance of first symptoms of geminivirus and early blight and a reduced infection rate of early blight were observed in the plants from exposed seeds to MFs. Pre-sowing magnetic treatments would enhance the growth and yield of tomato crop.  相似文献   

16.
This study explored processes responsible for environmental heterogeneity at a man-made post-mining landscape formed by heaping of homogeneous overburden in longitudinal “waves”. Soil chemistry (pH; conductivity; total C; total, available, and water-soluble P; and available K, Na, and Ca), the distribution of woody and herbaceous plants, litter quantity, and the distribution of soil fauna were studied along a100-m transect. Heterogeneity between waves was very low, and only available P and biomass of herbaceous plants differed among waves. In contrast, all investigated parameters except of total and available P and fauna density differed among position inside waves. Woody plants were more numerous on the wave tops and slopes than on the bottoms. Distribution of shrubs between waves affect between-waves distribution of other parameters, namely soil Cox, as waves with more shrubs have larger litter input and more soil carbon.  相似文献   

17.
Fringing reefs along the southwestern shores of the Caribbean islands of Curaçao and Bonaire (12°N), located outside the most frequent hurricane tracks, are rarely affected by heavy wave-action and major storms, yet have experienced disturbances such as coral bleaching, coral diseases, and mass mortalities. The last major hurricane to hit these islands occurred over 100 yr ago. In November 1999, Hurricane Lenny took an unusual west-to-east track, bisecting the Caribbean Basin and passing approximately 200 miles north of Curaçao and Bonaire. The leeward shores of both islands were pounded for 24 h by heavy waves (~3–6 m) generated while the storm was centered far to the west. Reef damage surveys at 33 sites conducted between November 1999 to April 2000, following the storm, documented occurrences of toppling, fragmentation, tissue damage, bleaching, and smothering due to the storm. Reefs were severely damaged along westward-facing shores but less impacted where the reef front was tangential to the wave direction or was protected by offshore islands. At the most severely damaged sites, massive coral colonies 2–3-m high (older than 100 yr) were toppled or overturned, smaller corals were broken loose and tumbled across the shallow reef platform and either deposited on the shore or dropped onto the deeper forereef slope. Branching and plating growth forms suffered more damage than massive species and large colonies experienced greater damage than small colonies. Toppled massive corals have a high potential of preserving the event signature even if they survive and continue to grow. Reorientation of large, long-lived coralla may provide a unique indicator of disturbance in a reef system rarely affected by hurricanes. At some locations, wave scouring removed loose sediment to reveal a cemented framework of Acropora cervicornis rubble on the shallow platform above 10-m depth. This rubble was generated in situ, not by storm processes, but rather by an earlier mass mortality of thickets of staghorn coral that covered extensive areas of the shallow platform prior to the incidence of white band disease in the early 1980s.  相似文献   

18.
Abstract.  1. The annual herb Arabidopsis thaliana is a prime model organism of plant molecular genetics, and is currently used to explore the molecular basis of resistance to herbivores. However, both the magnitude and the causes of variation in resistance among natural populations of A. thaliana are poorly known. The hypotheses (a) that resistance to a specialist herbivore, the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is positively related to the density of leaf trichomes, and (b) that oviposition preference by female moths is positively correlated to larval performance on different populations and maternal lines of the host plant were examined.
2. Variation in leaf trichome density and resistance to P. xylostella within and among six natural populations of A. thaliana in Sweden was quantified . Resistance was quantified by examining the number of eggs laid on plants exposed to ovipositing female moths and by monitoring larval development on plants of different origin.
3. Trichome density varied significantly among populations; for 4-week-old plants (exposed to ovipositing moths), it also varied significantly among maternal families within populations. The rate of oviposition varied significantly both among populations and among families within populations. This variation could partly be explained by a negative relationship between trichome density and egg number, and a positive relationship between plant size and egg number. Time to pupation, pupal mass, and time to adult eclosion did not vary among populations or maternal lines of the host plant, and offspring performance was not related to P. xylostella oviposition preference . The results indicate that A. thaliana populations may respond to selection for increased resistance to P. xylostella , and suggest that trichome production contributes to resistance against this specialist herbivore.  相似文献   

19.
Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na+ and Cl? around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand–clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na+ and Cl? concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P  < 0.001). However, by day 35, the groundwater salinity and height above the water table remained significant factors, but the root fresh mass density was no longer significant. Regression of data from the 200 and 400 mM NaCl treatments showed that the rate of Na+ accumulation in the soil increased until the Na+ concentration reached ~250 mM within the root zone; subsequent decreases in accumulation were associated with decreases in stomatal conductance. Salinization of the soil solution therefore had a feedback effect on further salinization within the root zone.  相似文献   

20.
Agave species are high‐yielding crassulacean acid metabolism (CAM) plants, some of which are grown commercially and recognized as potential bioenergy species for dry regions of the world. This study is the first field trial of Agave species for bioenergy in the United States, and was established to compare the production of Agave americana with the production of Agave tequilana and Agave fourcroydes, which are produced commercially in Mexico for tequila and fiber. The field trial included four experimental irrigation levels to test the response of biomass production to water inputs. After 3 years, annual production of healthy A. americana plants reached 9.3 Mg dry mass ha?1 yr?1 (including pup mass) with 530 mm of annual water inputs, including both rainfall and irrigation. Yields in the most arid conditions tested (300 mm yr?1 water input) were 2.0–4.0 Mg dry mass ha?1 yr?1. Agave tequilana and Agave fourcroydes were severely damaged by cold in the first winter, and produced maximum yields of only 0.04 Mg ha?1 yr?1 and 0.26 Mg ha?1 yr?1, respectively. The agave snout weevil (Scyphophorus acupunctatus) emerged as an important challenge for A. americana cropping, killing a greater number of plants in the higher irrigation treatments. Physiological differences in A. americana plants across irrigation treatments were most evident in the warmest season, with gas exchange beginning up to 3 h earlier and water use efficiency declining in treatments with the greatest water input (780 mm yr?1 water input). Yields were lower than previous projections for Agave species, but results from this study suggest that A. americana has potential as a bioenergy crop and would have substantially reduced irrigation requirements relative to conventional crops in the southwestern USA. Challenges for pest management and harvesting must still be addressed before an efficient production system that uses Agave can be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号