首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A DNA fragment of about 2000 base pairs carrying the gene for tRNA(1) (Ile) has been cloned from a total Eco RI endonuclease digest of Escherichia coli DNA. Sequence analyses revealed that about the first 850 base pairs from one end of the fragment contain a nucleotide sequence corresponding to that in the 3'-end of 16S rRNA. The gene for tRNA(Ile) follows the 16S rRNA gene and both genes flank a spacer sequence of 68 base pairs. The spacer region contains a repeating, a hair pin and a symmetrical structure when the sequence is viewed in the single stranded form. A notable hair pin structure is also observed in the region adjacent to the 3'-end of the tRNA(1) (Ile) gene. In addition, about 850 base pairs from the other end of the DNA fragment have been found to contain the nucleotide sequence of the 5'-end of 23S rRNA. The presence of the genes for tRNA(1) (Ile), 16S and 23S rRNA and the hybridization to tRNA(1) (Ala) suggest that this cloned DNA is part of one of the E. coli rRNA operons carrying these two tRNA genes as a spacer.Images  相似文献   

3.
We used PCR to differentiate species in the genus Phytophthora, which contains a group of devastating plant pathogenic fungi. We focused on Phytophthora parasitica, a species that can infect solanaceous plants such as tomato, and on Phytophthora citrophthora, which is primarily a citrus pathogen. Oligonucleotide primers were derived from sequences of a 1,300-bp P. parasitica-specific DNA segment and of an 800-bp P. citrophthora-specific segment. Under optimal conditions, the primers developed for P. parasitica specifically amplified a 1,000-bp sequence of DNA from isolates of P. parasitica. Primers for P. citrophthora similarly and specifically amplified a 650-bp sequence of DNA from isolates of P. citrophthora. Detectable amplification of these specific DNA sequences required picogram quantities of chromosomal DNA. Neither pair of primers amplified these sequences with DNAs from other species of Phytophthora or from the related genus Pythium. DNAs from P. parasitica and P. citrophthora growing in infected tomato stem tissue were amplified as distinctly as DNAs from axenic cultures of each fungal species. This is the first report on PCR-driven amplification with Phytophthora species-specific primers.  相似文献   

4.
The tRNA-coding locus of the 8.2-kilobase pair (kbp) Eco RI fragments Eco G of Euglena gracilis Klebs, strain Z Pringsheim chloroplast DNA was chosen for detailed analysis. Two recombinant plasmids, pPG14, containing Eco G and the vector pMB9, and pEZC23, containing the chloroplast DNA fragment HindIII B cloned in pBR322 were employed for the study. The tRNA locus was mapped to an 0.8-kbp region of Eco G also present in HindIII B. The DNA sequence of a 1.6 kbp from HindIII B, containing the entire tRNA gene locus was determined. Four tRNA genes were identified from the DNA sequence. The gene organization is tRNAVal-16 bp spacer-tRNAAsn-3 bp spacer-tRNAArg-45 bp spacer-tRNALeu. The tRNALeu gene is of the opposite polarity as the other three genes. This is the first evidence of such a tRNA cluster for a chloroplast genome. Also evident from the DNA sequence, 132 bp from the 5'-end of the tRNALeu gene, is a putative gene or pseudogene for a chloroplast protein.  相似文献   

5.
根据已报道的寄生疫霉(Phytophthora parasitica)parA1基因的序列设计引物,从4株寄生疫霉中国菌株(3株来自烟草,1株来自刺槐)中克隆到此基因并进行了重组表达。序列分析表明4株寄生疫霉parA1基因序列高度保守。对表达载体pET30a(+)双酶切,构建表达Parasiticein蛋白的表达载体pETeli,用CaCl\-2法转化大肠杆菌(Escherichia coli)BL21,通过诱导在大肠杆菌中进行非融合表达,表达产物在烟草上引起过敏性反应。性质测定表明,表达产物有一定的耐热性,并对蛋白酶K敏感。  相似文献   

6.
Structure of a yeast non-initiating methionine-tRNA gene.   总被引:8,自引:3,他引:5       下载免费PDF全文
4 to 8 kb Hind III fragments of yeast DNA were cloned into pBR322. One of these clones (pY6m3) containing a single tRNA3Met gene has been characterized in detail. The DNA sequence of the structural gene is colinear with the tRNA sequence, which means that in this case no intervening sequence is present. The 5'-leader and 3'-trailer sequences have also been determined. The 5'-flanking region can be folded up into possible secondary structures.  相似文献   

7.
8.
We have isolated and sequenced a tRNAPhe gene from Neurospora crassa. Hybridization analyses suggest that trnaPhe is the only tRNA encoded on the cloned 5 kb DNA fragment. The tRNAPhe gene contains an intervening sequence 16 nucleotides in length located one nucleotide 3' to the anticodon position. The tRNAPhe coding region of Neurospora and yeast are 91% conserved, whereas their intervening sequences are only 50% identical. The pattern of sequence conservation is consistent with a proposed secondary structure for the tRNA precursor in which the anticodon is base paired with the middle of the intervening sequence and the splice points are located in adjacent single-stranded loops. The DNA sequence following the tRNAPhe coding region is similar to sequences following other genes transcribed by RNA polymerase III in that it is AT-rich and includes a tract of A residues in the coding strand. In contrast, the sequence preceding the Neurospora tRNAPhe coding region does not resemble sequences preceding other sequenced tRNA genes.  相似文献   

9.
B Wittig  S Wittig 《Cell》1979,18(4):1173-1183
DNA (760 bp) isolated from nucleosome tetramers of staphylococcal nuclease-digested chicken embryo chromatin was highly enriched for tRNA genes and subsequently cloned in E. coli chi 1776. The location of genes coding for chicken embryo tRNALys, tRNAPhe and tRNAiMet within the cloned nucleosome tetramer DNA was determined using restriction endonucleases for which single cleavage sites could be predicted from the respective tRNA base sequence. All our tRNA genes reside nonrandomly at four locations on nucleosome tetramer DNA. The spacing between the tRNA gene locations is approximately 190 bp, similar to the DNA repeat length of chicken embryo chromatin. The four tRNA gene locations were also defined in noncloned nucleosome tetramer DNA highly enriched for tRNA genes. The majority of genes coding for tRNALys, tRNAPhe and tRNAiMet, respectively, are located in equal proportion 40-45, 230, 420 and 610 bp distant from the 5' end of the tRNA-identical strand. Thus the tRNA structural gene sequences all appear to begin about 20 bp "inside" the nucleosome core. As observed with nucleosomal DNA not enriched for tRNA genes, the phase relationship between tRNA genes and nucleosome location is maintained over a distance of 4-6 subsequent nucleosomes. A cloned molecule of nucleosomal DNA containing both a tRNALys gene and a tRNAiMet gene in the same polarity reveals that a phase adjustment might be necessary for the nucleosomes between these two tRNA genes in chicken embryo chromatin.  相似文献   

10.
11.
12.
The sequence of a region of honeybee (Apis mellifera ligustica) mitochondrial DNA, which contains the genes for cytochrome c oxidase subunits I and II (CO-I and CO-II) and inferred genes for tRNA(Asp), tRNA(Leu)UUR, tRNA(Lys), and tRNA(Trp), is presented. The region includes the segment previously identified as incurring a length increase in some other bee strains, including Africanized bees. The sequence information of this study and of that by Vlasak et al. shows that several shifts of tRNA genes have occurred between Apis and Drosophila, but shifts of other kinds of genes have yet to be demonstrated. The CO-I and CO-II gene sequences are both more A+T rich than are the corresponding Drosophila genes. Parsimony analyses using the mouse and Xenopus sequences as outgroups show significantly more amino acid substitutions on the branch to Apis (120) than on that to Drosophila (44), indicating a difference in the long-term evolutionary rates of hymenopteran and dipteran mtDNA.  相似文献   

13.
Sequence analysis of cloned rescued DNA fragments from a Bacillus subtilis strain with an inserted recombinant plasmid in ribosomal operon rrnE revealed the presence of two tRNA genes for Met and Asp at the 3' end of the operon. Probing chromosomal DNA from a strain carrying a plasmid inserted in rrnD with a fragment containing the genetically unassigned cluster of 16 tRNA genes revealed that the cluster is located immediately following the rrnD operon. Our findings show that all 10 rrn operons in B. subtilis are associated with tRNA gene clusters.  相似文献   

14.
J E Heckman  U L RajBhandary 《Cell》1979,17(3):583-595
Through analysis of cloned fragments of N. crassa mitochondrial DNA, we have derived a physical map for the region of the mitochondrial genome which encodes the ribosomal RNAs and most of the tRNAs. We have located RNA genes on this map by hybridization of purified 32P end-labeled RNA probes, and our findings are as follows. First, the gene for the large ribosomal RNA contains an intervening sequence of approximately 2000 bp. Second, the genes for the small and large ribosomal RNAs are not adjacent, as previously reported, and the region between them contains a number of tRNA genes, including that for the mitochondrial tRNATyr, which is located close to the small rRNA gene on the same strand of the mitochondrial DNA. Third, there is a second cluster of tRNA genes on the mitochondrial DNA following the large ribosomal RNA gene, but there is no evidence for the presence of tRNA genes in the intervening sequence of the large ribosomal RNA. Fourth, hybridization of labeled ribosomal and transfer RNAs to the separated strands of a cloned 16 kbp DNA fragment covering this region indicates that the two ribosomal RNAs and most, if not all, of the mitochondrial tRNAs are encoded on one strand of the mitochondrial DNA.  相似文献   

15.
16.
D M Peffley  M L Sogin 《Biochemistry》1981,20(14):4015-4021
Using a total tRNA population labeled with 32P, we have cloned a number of tRNA genes from Dictyostelium discoideum. A partial sequence of a cloned 1250-base-pair DNA insert, pDT-513, revealed the occurrence of a putative tRNATrp gene. In addition to the cloverleaf secondary structure, the tRNATrp gene contained all of the invariant and semiinvariant residues found in most tRNA sequences and has a 13-base-pair intron which is located one base removed from the 3' residue of the anticodon. The genomic distribution of the tRNA gene and its flanking sequences was examined via Southern annealing experiments. The structural gene is represented on at least six EcoRI fragments in the D. discoideum genome. Sequences flanking the 5' terminus of the cloned gene are repeated many times in the genome while the sequence flanking the 3' terminus of the pDT-513 DNA insert structural tRNA gene is present only once in the genome.  相似文献   

17.
18.
We have identified genes encoding a "native" tRNA(Asp) (trnD-GTC) and a "chloroplast-like" tRNA(Asn) (trnN-GTT) on opposite strands and 633 bp apart within a sequenced 1640 bp RsaI restriction fragment of wheat mtDNA. The trnD gene has been found previously at a different location in wheat mtDNA (P.B.M. Joyce et al. (1988) Piant Mol. Biol. 11, 833-843); the duplicate copies of this gene are identical within the coding and immediate flanking regions (9 bp downstream and at least 68 bp upstream), after which obvious sequence similarity abruptly disappears. The trnN gene is identical to its homolog in maize ctDNA; continuation of sequence similarity beyond the coding region suggests that this gene originated as promiscuous ctDNA that is now part of the wheat mitochondrial genome. In the course of this work, we have encountered some unexpected similarities between tRNA gene regions from wheat mitochondria and other sources. Detailed analysis of these similarities leads us to suggest that trnN genes reportedly from petunia nuclear DNA (N. Bawnik et al. (1983) Nucleic Acids Res. 11, 1117-1122) and lupine mtDNA (B. Karpińska and H. Augustyniak (1988) Nucleic Acids Res. 16, 6239) are, in fact, from petunia mtDNA and lupine ctDNA, respectively, whereas a putative wheat nuclear tRNA(Ser) (trnS-TGA) gene (Z. Szwekowska-Kulińska et al. (1989) Gene 77, 163-167) is actually from wheat mtDNA. In these instances, it seems probable that the DNA samples used for cloning contained trace amounts of DNA from another sub-cellular compartment, leading to the inadvertent selection of spurious clones.  相似文献   

19.
20.
Isolation of yeast tRNALeu genes. DNA sequence of a cloned tRNALeu3 gene.   总被引:7,自引:0,他引:7  
A library of cloned yeast DNA fragments generated by digestion of yeast DNA with the restriction endonuclease Bam HI has been screened by colony hybridization to total yeast [32P]tRNA. Four hundred colonies carrying yeast tRNA genes were isolated. By hybridization to 125I-tRNALeu3, we have isolated from this collection 14 colonies carrying fragments containing yeast tRNALeu genes. The size of the yeast Bam HI inserts ranged from 2.45 x 10(6) to 14 x 10(6) daltons. One of these fragments was mapped in detail by restriction endonuclease digestion and hybridization to 125I-tRNALeu3. The presence of a tRNALeu3 gene was confirmed by DNA sequence. The results indicate that the tRNALeu3 coding region is not co-linear with the tRNALeu3. An intervening tract of 33 base pairs interrupts the coding sequences 1 base pair past the anticodon coding region. The putative structure of a tRNALeu3 precursor is deduced in which the anticodon base pairs with residues from the intervening sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号