首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human holocarboxylase synthetase (HCS) catalyzes linkage of the vitamin biotin to the biotin carboxyl carrier protein (BCCP) domain of five biotin-dependent carboxylases. In the two-step reaction, the activated intermediate, bio-5'-AMP, is first synthesized from biotin and ATP, followed by covalent linkage of the biotin moiety to a specific lysine residue of each carboxylase BCCP domain. Selectivity in HCS-catalyzed biotinylation to the carboxylases was investigated in single turnover stopped flow and quench flow measurements of biotin transfer to the minimal biotin acceptor BCCP fragments of the carboxylases. The results demonstrate that biotinylation of the BCCP fragments of the mitochondrial carboxylases propionyl-CoA carboxylase, pyruvate carboxylase, and methylcrotonoyl-CoA carboxylase is fast and limited by the bimolecular association rate of the enzyme with substrate. By contrast, biotinylation of the acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2) fragments, both of which are accessible to HCS in the cytoplasm, is slow and displays a hyperbolic dependence on substrate concentration. The correlation between HCS accessibility to biotin acceptor substrates and the kinetics of biotinylation suggests that mitochondrial carboxylase sequences evolved to produce fast association rates with HCS in order to ensure biotinylation prior to mitochondrial import. In addition, the results are consistent with a role for HCS specificity in dictating biotin distribution among carboxylases.  相似文献   

2.
Recent studies of biotin status during pregnancy provide evidence that a marginal degree of biotin deficiency develops in a substantial proportion of women during normal pregnancy. Several lines of evidence suggest that although the degree of biotin deficiency is not severe enough to produce the classic cutaneous and behavioral manifestations of biotin deficiency, the deficiency is severe enough to produce metabolic derangements in women and may be teratogenic. In studies of mice, a similar degree of biotin deficiency induces characteristic fetal malformations at a high rate. Fetal hepatic biotin content and PCC activity decrease indicating that the fetuses also become biotin deficient. Fetal hepatic acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase and beta-methylcrotonyl-CoA carboxylase abundances determined by Western blotting decreased more than the dam holocarboxylase abundances (10% of sufficient vs. 50% of sufficient); however, hepatic mRNA for the carboxylases and for HCS did not change significantly in either dams or fetuses. These observations suggest that maternal biotin deficiency results in a lack of adequate biotin to biotinylate apocarboxylases in the fetus despite the normal expression of genes coding for the apocarboxylases and holocarboxylase synthetase.  相似文献   

3.
Holocarboxylase synthetase (HCS) catalyzes the biotinylation of five carboxylases in human cells, and mutations of HCS cause multiple carboxylase deficiency (MCD). Although HCS also participates in the regulation of its own mRNA levels, the relevance of this mechanism to normal metabolism or to the MCD phenotype is not known. In this study, we show that mRNA levels of enzymes involved in biotin utilization, including HCS, are down-regulated during biotin deficiency in liver while remaining constitutively expressed in brain. We propose that this mechanism of regulation is aimed at sparing the essential function of biotin in the brain at the expense of organs such as liver and kidney during biotin deprivation. In MCD, it is possible that some of the manifestations of the disease may be associated with down-regulation of biotin utilization in liver because of the impaired activity of HCS and that high dose biotin therapy may in part be important to overcoming the adverse regulatory impact in such organs.  相似文献   

4.
Biotinylation is a recent addition to the list of reported posttranslational modifications made to histones. Holocarboxylase synthetase (HCS) and biotinidase have been implicated as biotinylating enzymes. However, the details of the mechanism and the regulation of biotin transfer on and off histones remains unclear. Here we report that in a cell culture system low biotin availability reduces biotinylation of carboxylases, yet apparent biotinylation of histones is unaffected. This is despite biotin depletion having detrimental effects on cell viability and proliferation. Further analysis of the widely used method for detecting biotin on histones, streptavidin blotting, revealed that streptavidin interacts with histones independently of biotin binding. Preincubation of streptavidin with free biotin reduced binding to biotinylated carboxylases but did not block binding to histones. To investigate biotinylation of histones using an alternative detection method independent of streptavidin, incorporation of 14C biotin into biotinylated proteins was analyzed. Radiolabeled biotin was readily detectable on carboxylases but not on histones, implying very low levels of biotin in the nucleus attached to histone proteins (< 0.03% biotinylation). In conclusion, we would caution against the use of streptavidin for investigating histone biotinylation.  相似文献   

5.
Holocarboxylase synthetase (HCS) is an essential enzyme that catalyzes the incorporation of biotin into apo carboxylase and the biotinylation of the four biotin-dependent carboxylases in the human cell. Deficiency of HCS results in decreased activity of these carboxylases and affects various metabolic processes. Despite the importance of this enzyme, the recognition mechanism of the biotinoyl domain by human HCS (hHCS) has remained unclear. We have developed a method to express hHCS in the baculovirus system and used it to purify catalytically active, full-length hHCS. NMR experiments on the biotinoyl domains from acetyl-CoA carboxylase indicate that when hHCS is added, it recognizes the MKM motif in human and in Escherichia coli with a preference to the human biotinoyl domain. In addition, hHCS can biotinylate the biotinoyl domains from human and E. coli acetyl-CoA carboxylase at similar rates compared to the E. coli biotin protein ligase, BirA, which reacts very slowly with the human biotinoyl domain. We propose that the hHCS has greater substrate acceptability, while the BirA has higher substrate specificity. These results provide insights into substrate recognition by hHCS, which can be distinguished from BirA in this respect.  相似文献   

6.
Genes for two subunits of acetyl-coenzyme A carboxylase, biotin carboxylase and biotin carboxyl carrier protein, have been cloned from Anabaena sp. strain PCC 7120. The two proteins are 181 and 447 amino acids long and show 40 and 57% identity to the corresponding Escherichia coli proteins, respectively. The sequence of the biotinylation site in Anabaena sp. strain PCC 7120 is MetLysLeu, not the MetLysMet found in other sequences of biotin-dependent carboxylases. The amino acid sequence of biotin carboxylase is also very similar (32 to 47% identity) to the sequence of the biotin carboxylase domain of other biotin-dependent carboxylases. Genes for these two subunits of acetyl-coenzyme A carboxylase are not linked in Anabaena sp. strain PCC 7120, contrary to the situation in E. coli, in which they are in one operon.  相似文献   

7.
Biotin protein ligases catalyze specific covalent linkage of the coenzyme biotin to biotin-dependent carboxylases. The reaction proceeds in two steps, including synthesis of an adenylated intermediate followed by biotin transfer to the carboxylase substrate. In this work specificity in the transfer reaction was investigated using single turnover stopped-flow and quench-flow assays. Cognate and noncognate reactions were measured using the enzymes and minimal biotin acceptor substrates from Escherichia coli, Pyrococcus horikoshii, and Homo sapiens. The kinetic analysis demonstrates that for all enzyme-substrate pairs the bimolecular rate of association of enzyme with substrate limits post-translational biotinylation. In addition, in noncognate reactions the three enzymes displayed a range of selectivities. These results highlight the importance of protein-protein binding kinetics for specific biotin addition to carboxylases and provide one mechanism for determining biotin distribution in metabolism.  相似文献   

8.
The attachment of biotin onto the biotin-dependent enzymes is catalysed by biotin protein ligase (BPL), also known as holocarboxylase synthase HCS in mammals. Mammals contain five biotin-enzymes that participate in a number of important metabolic pathways such as fatty acid biogenesis, gluconeogenesis and amino acid catabolism. All mammalian biotin-enzymes are post-translationally biotinylated, and therefore activated, through the action of a single HCS. Substrate recognition by BPLs occurs through conserved structural cues that govern the specificity of biotinylation. Defects in biotin metabolism, including HCS, give rise to multiple carboxylase deficiency (MCD). Here we review the literature on this important enzyme. In particular, we focus on the new information that has been learned about BPL's from a number of recently published protein structures. Through molecular modelling studies insights into the structural basis of HCS deficiency in MCD are discussed.  相似文献   

9.
10.
11.
Holocarboxylase synthetase (HCS, eukaryotic enzyme) and BirA (prokaryotic) are biotin protein ligases that catalyze the ATP-dependent attachment of biotin to apocarboxylases via the reactive intermediate, bio-5′-AMP. In this study, we examined the in vitro mechanism of biotin attachment to histone H2A in the presence of HCS and BirA. The experiment derives from our observations that HCS is found in the nucleus of cells in addition to the cytoplasm, and it has the ability to attach biotin to histones in vitro (Narang et al., Hum Mol Genet 2004; 13:15–23). Using recombinant HCS or BirA, the rate of biotin attachment was considerably slower with histone H2A than with the biotin binding domain of an apocarboxylase. However, on incubation of recombinant H2A with chemically synthesized bio-5′-AMP, H2A was observed to be rapidly labeled with biotin in the absence of enzyme. Nonenzymatic biotinylation of a truncated apocarboxylase (BCCP87) has been previously reported (Streaker and Beckett, Protein Sci 2006; 15:1928–1935), though at a much slower rate than we observe for H2A. The specific attachment sites of nonenzymatically biotinylated recombinant H2A at different time points were identified using mass spectrometry, and were found to consist of a similar pattern of biotin attachment as seen in the presence of HCS, with preference for lysines in the highly basic N-terminal region of the histone. None of the lysine sites within H2A resembles the biotin attachment consensus sequence seen in carboxylases, suggesting a novel mechanism for histone biotinylation.  相似文献   

12.
Biotin-dependent carboxylases require covalently bound biotin for enzymatic activity. The biotin is attached through a lysine residue, which in a number of bacterial, avian, and mammalian carboxylases, is found within the conserved sequence Ala-Met-Lys-Met. We have determined the partial nucleotide sequence of cDNA clones for human propionyl-CoA carboxylase and pyruvate carboxylase. The predicted amino acid sequence of both these proteins contains the conserved tetrapeptide 35 residues from the carboxy terminus. In addition, both proteins contain the tripeptide, Pro-Met-Pro, 26 residues toward the amino terminus from the biotin attachment site. The overall amino acid homology through this region is 43%. Similar findings have been made for the biotin-containing polypeptides of transcarboxylase of Propionibacterium shermanii and acetyl-CoA carboxylase of Escherichia coli (W. L. Maloy, B. U. Bowien, G. K. Zwolinski, K. G. Kumar, and H. G. Wood (1979) J. Biol. Chem. 254, 11615-11622). The implications of this sequence conservation with regard to the function and evolution of biotin-dependent carboxylases is discussed. We propose that the 60 amino acids surrounding the biotin site are bounded by a proline "hinge" and the carboxy terminus has remained conserved as a result of constraints imposed by biotinylation of the enzyme.  相似文献   

13.
Biotin uptake, utilization, and efflux were studied in normal and biotin-deficient cultured rat hepatocytes. Biotin-deficient cells accumulate about 16-fold more biotin than do normal cells when incubated with a physiological concentration of biotin for 24 h. This difference is due to the greater amount of protein-bound biotin relative to free biotin in biotin-deficient hepatocytes, and is attributable to the presence of more apocarboxylases in deficient cells. The rate of biotin uptake and the rate of activation of the carboxylases, acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, and beta-methylcrotonyl-CoA carboxylase, are proportional to the concentration of exogenous biotin. Increases in carboxylase activities are proportional to the concentration of biotin only at exogenous biotin concentrations of less than 410 nM. Concentrations of 410 nM or more biotin increase carboxylase activities to normal or near normal. Biocytin inhibits biotin uptake at very high concentrations, whereas desthiobiotin and lipoic acid have no effect. Biocytin in the medium results in carboxylase activation either intracellularly or extracellularly by conversion to biotin by biotinidase. Investigation of the efflux of biotin from normal and biotin-deficient cells preincubated with the vitamin showed greater retention of biotin by biotin-deficient cells than by normal cells over 24 h. Retention of free biotin is similar in biotin-deficient and normal cells. The greater amount of biotin retained by biotin-deficient cells is accounted for by the greater amount of bound biotin in these cells. These results suggest that the free and bound biotin pools are independently regulated. The ready loss of free biotin from these cells has implications for the treatment of inherited, biotin-responsive carboxylase deficiencies.  相似文献   

14.
Biotin is a water-soluble vitamin that participates as a cofactor in gluconeogenesis, fatty acid synthesis and branched chain amino acid catabolism. It functions as the carboxyl carrier for biotin-dependent carboxylases. Its covalent attachment to carboxylases is catalyzed by holocarboxylase synthetase. Our interest in biotin has been through the genetic disease, "biotin-responsive multiple carboxylase deficiency," caused by deficient activity of holocarboxylase synthetase. As part of these studies, we made the unexpected findings that the enzyme also targets to the nucleus and that it catalyzes the attachment of biotin to histones. We found that patients with holocarboxylase synthetase deficiency have a much reduced level of biotinylated histones, yet the importance of this process is unknown. The dual nature of biotin, as the carboxyl-carrier cofactor of carboxylases and as a ligand of unknown function attached to histones, is an enigma that suggests a much more involved role for biotin than anticipated. It may change our outlook on the optimal nutritional intake of biotin and its importance in biological processes such as development, cellular homeostasis and regulation.  相似文献   

15.
Recent studies of biotin status during pregnancy provide evidence that a marginal degree of biotin develops in a substantial proportion of women during normal pregnancy. Several lines of evidence suggest that, although the degree of biotin deficiency is not severe enough to produce the classic cutaneous and behavioral manifestations of biotin deficiency, the deficiency is severe enough to produce metabolic derangements in women and that characteristic fetal malformations occur at a high rate in some mammals. Moreover, our analysis of data from a published multivitamin supplementation study provide significant albeit indirect evidence that the marginal degree of biotin deficiency that occurs spontaneously in normal human gestation is teratogenic. Investigation of potential mechanisms provides evidence that biotin transport by the human placenta is weak. Further, proliferating cells accumulate biotin at a rate five times faster than quiescent cells; this observation suggests that there is an increased biotin requirement associated with cell proliferation. Perhaps this requirement arises from the need to synthesize additional biotin-dependent holocarboxylases or provide additional biotin as a substrate for biotinylation of cellular histones. Reduced activity of the biotin-dependent enzymes acetyl-CoA carboxylase and propionyl-CoA carboxylase can cause alterations of lipid metabolism and might theoretically lead to alterations of polyunsaturated fatty acid and prostaglandin metabolism that derange normal skeletal development.  相似文献   

16.
Acetyl-CoA carboxylase catalyzes the committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multifunctional enzyme consisting of three separate proteins: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source, has a homologous functionally identical subunit in the mammalian biotin-dependent enzymes propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. In humans, mutations in either of these enzymes result in the metabolic deficiency propionic acidemia or methylcrotonylglycinuria. The lack of a system for structure-function studies of these two biotin-dependent carboxylases has prevented a detailed analysis of the disease-causing mutations. However, structural data are available for E. coli biotin carboxylase as is a system for its overexpression and purification. Thus, we have constructed three site-directed mutants of biotin carboxylase that are homologous to three missense mutations found in propionic acidemia or methylcrotonylglycinuria patients. The mutants M169K, R338Q, and R338S of E. coli biotin carboxylase were selected for study to mimic the disease-causing mutations M204K and R374Q of propionyl-CoA carboxylase and R385S of 3-methylcrotonyl-CoA carboxylase. These three mutants were subjected to a rigorous kinetic analysis to determine the function of the residues in the catalytic mechanism of biotin carboxylase as well as to establish a molecular basis for the two diseases. The results of the kinetic studies have revealed the first evidence for negative cooperativity with respect to bicarbonate and suggest that Arg-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.  相似文献   

17.
18.
When we incubated biotin carboxylase from Escherichia coli with ATP in absence of biotin we observed HCO3- -dependent ATP hydrolysis, which was activated by 10% ethanol in the same proportion as the activity of D-biotin carboxylation assayed in the presence of biotin. The two activities exhibited identical heat stability and were protected equally by glycerol; both required Mg2+ and K+ and showed similar dependency on the concentration of ATP. Biotin assay excluded potential contamination by traces of biotin as a cause of the observed ATP hydrolysis, and this was confirmed by the findings that carboxybiotin did not accumulate and that avidin was uninhibitory. Therefore we concluded that this HCO3- -dependent ATPase was genuinely a partial activity of biotin carboxylase. This partial activity supports a sequential mechanism for enzymatic carboxylation of biotin in which HCO3- is activated by ATP in a first step. It is consistent with the initial formation of the carbonic-phosphoric anhydride (HOCO2PO3(2-)), and it does not agree with models where biotin is phosphorylated by ATP prior to reaction with HCO3-. It appears that enzymes that use HCO3- for carboxylation, including biotin-dependent carboxylases, phosphoenolpyruvate carboxylase, and carbamoyl phosphate synthetase, activate HCO3- by a common mechanism involving the initial formation of the carbonic-phosphoric anhydride.  相似文献   

19.
20.
Biotin biochemistry and human requirements   总被引:4,自引:0,他引:4  
Human biotin turnover and requirements can be estimated on the basis of (1) concentrations of biotin and metabolites in body fluids, (2) activities of biotin-dependent carboxylases, and (3) the urinary excretion of organic acids that are formed at increased rates if carboxylase activities are reduced. Recent studies suggest that the urinary excretions of biotin and its metabolite bisnorbiotin, activities of propionyl-CoA carboxylase and beta-methylcrotonyl-CoA carboxylase in lymphocytes, and urinary excretion of 3-hydroxyisovaleric acid are good indicators of marginal biotin deficiency. On the basis of studies using these indicators of biotin deficiency, an adequate intake of 30 microg (123 nmoles) of biotin per day is currently recommended for adults. The dietary biotin intake in Western populations has been estimated to be 35 to 70 microg/d (143-287 nmol/d). Recent studies suggest that humans absorb biotin nearly completely. Conditions that may increase biotin requirements in humans include pregnancy, lactation, and therapy with anticonvulsants or lipoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号