首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila eggshell is a highly specialized extracellular matrix that forms between the oocyte and the surrounding epithelial follicle cells during late oogenesis. The dec-1 gene, which is required for proper eggshell assembly, produces three proproteins that are cleaved within the vitelline membrane layer to multiple derivatives. The different spatial distributions of the cleaved derivatives suggest that they play distinct roles in eggshell assembly. Using extant dec-1 mutations in conjunction with genetically engineered dec-1 transgenes, we show that, although all three dec-1 proproteins, fc106, fc125, and fc177, are required for female fertility, gross morphological abnormalities in the eggshell are observed only in the absence of fc177. The coalescence of the roof, pillar, and floor substructures of the tripartite endochorion suggested that quantitatively minor fc177 derivatives are necessary to prevent ectopic aggregation of endochorion proteins during the assembly process. Expression of a fc177 cDNA in dec-1 null mutants was sufficient to restore spaces within the endochorion layer. Fc177 may function as a scaffolding protein akin to those utilized in viral morphogenesis.  相似文献   

2.
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell.  相似文献   

3.
The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.  相似文献   

4.
Although sexual selection has been predominantly used to explain the rapid evolution of sexual traits, eggs of oviparous organisms directly face both the challenges of sexual selection as well as natural selection (environmental challenges, survival in niches, etc.). Being the outermost membrane in most insect eggs, the chorion layer is the interface between the embryo and the environment, thereby serving to protect the egg. Adaptive ecological radiations such as divergence in ovipositional substrate usage and host-plant specializations can therefore influence the evolution of eggshell proteins. We can hypothesize that proteins localized on the outer eggshell may be affected to a greater degree by ecological challenges compared with inner eggshell proteins, and therefore, proteins localized in the outer eggshell (chorion membrane) may evolve differently (faster) than proteins localized in the inner egg membrane (vitelline membrane). We compared the evolutionary divergence of vitelline with chorion membrane proteins in species of the melanogaster subgroup and found that chorion proteins as a group are indeed evolving faster than vitelline membrane proteins. At least one vitelline membrane protein (Vm32E), specifically localized on the outer eggshell, is also evolving faster than other vitelline membrane proteins suggesting that all proteins localized on the outer eggshell may be evolving rapidly. We also found evidence that specific codons in chorion proteins cp15 and cp16 are evolving under positive selection. Polymorphism surveys of cp16 revealed inflated levels of divergence relative to polymorphism in specific regions of the gene, indicating that these regions are under strong selection. At the morphological level, we found notable difference in eggshell surface morphologies between specialist (Drosophila sechellia and Drosophila erecta) and generalist species of Drosophila. We do not know if any of the chorion proteins actually interact with spermatozoids, therefore leaving the possibility of rapid evolution through gametic interaction wide open. At this point, however, our results support previous suggestions that divergences in ecology, particularly, ovipositional substrate divergences may be a strong force driving the evolution of eggshell proteins.  相似文献   

5.
The development of the head and tail regions of the Drosophila embryo is dependent upon the localized polar activation of Torso (Tor), a receptor tyrosine kinase that is uniformly distributed in the membrane of the developing embryo. Trunk (Trk), the proposed ligand for Tor, is secreted as an inactive precursor into the perivitelline fluid that lies between the embryonic membrane and the vitelline membrane (VM), the inner layer of the eggshell. The spatial regulation of Trk processing is thought to be mediated by the secreted product of the torsolike (tsl) gene, which is expressed during oogenesis by a specialized population of follicle cells present at the two ends of the oocyte. We show here that Tsl protein is specifically localized to the polar regions of the VM in laid eggs. We further demonstrate that although Tsl can associate with nonpolar regions of the VM, the activity of polar-localized Tsl is enhanced, suggesting the existence of another spatially restricted factor acting in this pathway. The incorporation of Tsl into the VM provides a mechanism for the transfer of spatial information from the follicle cells to the developing embryo. To our knowledge, Tsl represents the first example of an embryonic patterning determinant that is a component of the eggshell.  相似文献   

6.
Seven noncomplementing female sterile mutations that affect eggshell assembly in Drosophila have been mapped to the 7C1-3 region of the X-chromosome. TEM of the mature eggshell of one of the alleles, fs(1)410, shows a lack of organization within the endochorion and an accumulation of electron dense material in the vitelline membrane of stage 14 eggchambers. SDS-PAGE of radiolabeled eggshell proteins shows that two proteins, s67 and s85, fail to accumulate in the fs(1)410 eggshell. In wild-type flies s85 is produced during stage 10 of oogenesis and then processed to s67 in stages 13 and 14. Neither s85 nor an additional stage 10 specific follicle cell protein (s130) are detected in fs(1)410 or four of the mutant alleles. Short-term labeling studies, analyses of in vitro translation products, and the simultaneous occurrence of s85 and s130 as electrophoretic variants in geographic fly strains indicate s85 is derived from s130. Although major biochemical differences appear in stage 10, mutant and wild-type eggshells are morphologically indistinguishable until stages 13-14. These results suggest that follicle cell proteins synthesized during the time of vitelline membrane deposition (stage 10) are important for proper assembly of the chorion layers during stages 13 and 14.  相似文献   

7.
The developmental aspects of the Leptinotarsa decemlineata crystalline chorionic layer (CCL) morphogenesis, its composition and its supramolecular structure were studied. The mature Leptinotarsa decemlineata eggshell consists of the vitelline membrane and the CCL, while the follicle cell remnants following their degeneration after oogenesis completion constitute the outer chorionic layer. The vitelline membrane and the CCL layers are formed through continuous material deposition from the follicular epithelium, whereas the main morphogenic factor during most insect eggshell formation, namely the follicle cell and oocyte microvilli, are seemingly involved only in vitelline membrane formation. Analysis of the CCL morphogenesis showed that this layer is assembled from a fiber-like pre-crystalline material, which accumulates at the vitelline membrane-follicle cell interface. The mature CCL is about 1 microm thick and exhibits a periodicity of approximately 10 nm, while computer image analysis studies of thin-sectioned CCL revealed the existence of crystalline layers parallel to the CCL surface. Finally, SDS-PAGE-electrophoresis of purified CCLs showed that this crystalline layer is of a proteinaceous nature and is most likely composed of 3-5 polypeptides with a molecular weight ranging in between 28-60 kDa. Overall, these data exemplify for the first time the nature and supramolecular arrangement of a crystalline layer and its constituent molecules in Coleoptera.  相似文献   

8.
J C Badciong  J M Otto  G L Waring 《Genetics》2001,159(3):1089-1102
The Drosophila dec-1 gene encodes multiple proteins that are required for female fertility and proper eggshell morphogenesis. Genetic and immunolocalization data suggest that the different DEC-1 proteins are functionally distinct. To identify regions within the proteins with potential biological significance, we cloned and sequenced the D. yakuba and D. virilis dec-1 homologs. Interspecies comparisons of the predicted translation products revealed rapidly evolving sequences punctuated by blocks of conserved amino acids. Despite extensive amino acid variability, the proteins produced by the different dec-1 homologs were functionally interchangeable. The introduction of transgenes containing either the D. yakuba or the D. virilis dec-1 open reading frames into a D. melanogaster DEC-1 protein null mutant was sufficient to restore female fertility and wild-type eggshell morphology. Normal expression and extracellular processing of the DEC-1 proteins was correlated with the phenotypic rescue. The nature of the conserved features highlighted by the evolutionary comparison and the molecular resemblance of some of these features to those found in other extracellular proteins suggests functional correlates for some of the multiple DEC-1 derivatives.  相似文献   

9.
Scanning and transmission electron microscopy were used to study the morphology and formation of the eggshell in the tarnished plant bug, Lygus lineolaris. Eggs are bean-shaped, with an operculum at the anterior end surrounded by a row of 36-40 respiratory horns. Three micropylar openings are on the operculum, and are sealed in oviposited eggs. The chorion consists of the chorion proper and the innermost chorionic layer. An air layer composed of colonnades is present in the chorion. The innermost chorionic layer is homogeneous and electron lucent. The follicle cells secrete electron dense materials that later coalesced into the reticulated vitelline membrane. This is followed by the deposition of the innermost chorionic layer by the follicle cells. After the primordial innermost chorionic layer is formed, follicle cells at the anterior pole of the oocyte secrete the scaffold for the colonnades in the air layer. Later, the primordial scaffold matrix is redistributed and localized at the lateral and posterior end of the oocyte where it becomes secondarily modified. At the end of choriogenesis, follicle cells at the anterior pole secrete the operculum and respiratory horns.  相似文献   

10.
One of the major pests in Greek cherry orchards is the cherry fly Rhagoletis cerasi (Diptera: Tephritidae). In order to complete our comparative work on the chorion assembly of other representatives of the fruit flies (e.g. Ceratitis capitata and Dacus oleae) we studied eggshell morphogenesis in the cherry fly. The oocyte is surrounded by several distinct layers which are produced during choriogenesis. The eggshell consists of the vitelline membrane, a fibrous layer of possible water-proofing function, an innermost chorionic layer, endochorionic and exochorionic layers. The endochorion shows a branched configuration with irregular cavities, and the exochorion consists of inner and outer layers for better embryo protection. At the anterior region of the follicle, the hexagonal borders of the follicle cells are created by endochorionic material, covered by both inner and outer exochorion. This area resembles the D. melanogaster chorionic appendages and therefore can serve for plastron respiration. The structural results support the phylogenetic relationships among the tephritids (Rhagoletis is closer to Ceratitis than Dacus). The presence of peroxidase in the endochorion, detected by diaminobenzidine, is consistent with the eggshell hardening at the end of choriogenesis, following the same pattern with the other fruit flies studied so far. Two major chorionic proteins are found both in R. cerasi and in C. capitata and therefore general conclusions can be drawn from this study, concerning the pattern of choriogenesis, which all dipteran insects follow, in order to create a resistant and functional eggshell, and the high conservation of the proteinaceous components of the chorion among species in the order.  相似文献   

11.
Conventional and freeze-fracture electron microscopy, immuno-electron microscopy of ovarian cryosections and confocal immunofluorescence were used to analyze the ovarian distribution of the major protein classes being secreted by the follicle cells during the vitellogenic and choriogenic stages of Drosophila oogenesis. Our results clearly demonstrated that at vitellogenic stages the follicle cells co-secrete constitutively vitelline membrane and yolk proteins that are either sorted into distinct secretory vesicles or they are segregated in different parts of bipartite vesicles by differential condensation. Following their exocytosis only the vitelline membrane proteins are incorporated into the forming vitelline membrane. The yolk proteins (along with their hemolymph circulating counterparts) diffuse through gaps amongst the incomplete vitelline membrane and are internalized through endocytosis by the oocyte where they are finally stored into modified lysosomes referred to as alpha-yolk granules. The unexpected immunolocalization of vitelline membrane antigens in the associated body of the alpha-yolk granules may indicate that this structure is a transient repository for the proteins being internalized into the oocyte along with the yolk proteins. In the early choriogenic follicle cells the vitelline membrane and early chorion proteins were found to be co-secreted and to be evenly intermixed into the same secretory vesicles. These findings illuminate new details concerning the follicle cells secretory and oocyte endocytic pathways and provide for the first time evidence for condensation-mediated sorting of constitutively secreted proteins in Drosophila.  相似文献   

12.
Specific mutations in the yolk protein genes, yp1 and yp2, of Drosophila melanogaster cause the yolk proteins (YPs) they encode to precipitate, ultimately resulting in female sterility. YPs of the yp1 mutant fs(1)1163 are secreted normally but then precipitate as globules and occasionally as crystalline fibers in the subbasement membrane space of the fat body (Butterworth et al., 1991, J. Cell Biol. 112, 727-737). The present ultrastructural and immunological studies of the fat body of the yp2 mutant fs(1)K313 show that YP also precipitates as globules in the same tissue compartment. The globules are also incapable of passing into the hemolymph but they are morphologically distinct from those of fs(1)1163. Similar analyses were performed on developing oocytes in wild type and both mutant strains. YP-containing aggregates, ultrastructurally similar to those in the fat body of each respective mutant, were found in the space between the plasmalemma and the vitelline membrane and embedded within the membrane itself. The evidence suggests that the precipitates interfere with the correct assembly of the eggshell membranes, leading to the sterile phenotype. Immunogold studies demonstrate that newly synthesized YPs in the normal and mutant strains share secretory vesicles with putative, vitelline membrane proteins and that the translocation of follicle cell YP is not through the membrane along the interfollicular spaces but directly through the plasmalemma facing the oocyte. Further the YP precipitates in the mutants permit visualization of the polarity of exocytosis of YP from the follicle cells.  相似文献   

13.
Identification of vitelline membrane proteins in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, proteins involved in vitelline membrane production are secreted by ovarian follicle cells during stages 9 and 10 of oogenesis. We have used SDS-PAGE and two-dimensional electrophoresis to identify six major size classes of radiolabeled components in purified vitelline membrane preparations. Analyses of in vivo labeled proteins from egg chambers of different developmental stages and stage 10 follicle cells show that components of five of these size classes are synthesized by follicle cells during the period of vitelline membrane deposition. Immunological analysis of eggshell antigens utilizing complex antisera raised to purified eggshell fragments has confirmed the identity of components of three size classes.  相似文献   

14.
Summary Thedec-1 eggshell gene inDrosophila melanogaster encodes follicle cell proteins required for proper eggshell assembly. As shown by Southern and Northern analyses thedec-1 gene occurs in four alleles (Fcl-4) among wild-type strains. Its second exon has a distinct feature in the form of 12 repeats with 78–91 nucleotides; the first five show nearly 100% homology. DNA sequence comparison of the repeated region of the alleles revealed that the length polymorphisms are caused by changes in the numbers of the first five repeats. The results suggest that the alleles have been generated by unequal intragenic crossing-over and/or slippage during DNA replication and that the allelic length variants have arisen independently. The possiblilty that the most common allele,FC1, has a selective advantage over the other alleles is discussed.  相似文献   

15.
Marc Furriols  Jordi Casanova 《Fly》2014,8(2):113-119
Nasrat and Polehole, two Drosophila proteins related functionally and by sequence, are secreted from the oocyte and incorporated into the vitelline membrane, where they play a role in the integrity of the same and in the activation of embryonic Torso RTK. In addition, they also accumulate in a punctate pattern in the follicular epithelium. Here we show that their accumulation at the follicle cells depends on their gene expression in the germline, indicating that these proteins move from the oocyte to the follicle cells in a process that does not require endocytosis. Finally we used cell markers to examine the distribution of these proteins at the follicle cells and show they accumulated in aggregates with vitelline membrane proteins in close association with the plasmatic membrane. We propose that these aggregates represent spatially restricted sinks for vitelline membrane proteins that fail to be incorporated into vitelline bodies and later on into the vitelline membrane.  相似文献   

16.
Spangenberg DK  Waring GL 《Genetics》2007,177(3):1595-1608
The Drosophila dec-1 gene produces three proproteins required for female fertility and eggshell assembly. The three proproteins are distinguished by their C termini. Fc106, the most abundant proprotein, is cleaved within the vitelline membrane to three mature derivatives in a developmentally regulated manner. To define sequences within fc106 that are critical for its function, we created wild-type and mutant versions of an fc106 cDNA transgene. The functional consequences of the mutations were assessed in dec-14, a female-sterile splicing mutant that does not produce the fc106 isoform. The fertility of dec-14 females was restored by the introduction of either a wild-type transgene or a transgene bearing a C-terminal deletion that included fc106-specific sequences. Surprisingly, the removal of internal coding sequences created an aberrant DEC-1 proprotein that induced female sterility when introduced into wild-type flies. Dominant female sterility was not associated with larger deletions that included the fc106 N terminus, suggesting that abnormal juxtaposition of N- and C-terminal sequences in the aberrant proprotein interfered with endogenous DEC-1 proteins. Changes in the fractionation behavior of the endogenous fc106 C-terminal derivative, s60, and morphological changes in the endochorion in response to expression of the aberrant proprotein support this interpretation.  相似文献   

17.
Kendirgi F  Swevers L  Iatrou K 《FEBS letters》2002,524(1-3):59-68
We have cloned and functionally characterized a novel protein, BmVMP30, which is synthesized by the cells of the follicular epithelium of the ovarian follicles of the domesticated silkworm Bombyx mori, secreted from them and associated with the vitelline membrane. BmVMP30 is a 30 kDa protein that bears limited structural features reminiscent of other insect vitelline membrane proteins. Although BmVMP30 does not share pronounced similarities or signature motifs with other reported proteins, its temporal and spatial expression and its behavior throughout oogenesis suggest that it is a novel member of the insect vitelline membrane protein family. The protein is expressed exclusively in the cells of the follicular epithelium during stages -15 to -1 of vitellogenesis, secreted from them and, ultimately, localized at the junction between the oocyte and the eggshell, where the vitelline membrane is located. Treatment of follicles with an antisense oligonucleotide that encompasses the translation initiation codon results in the production of an N-terminally truncated protein and disruption of the integrity of the follicular epithelium. Antisense oligonucleotide treatment, however, has no effect on the implementation of the developmental program that directs the autonomous progression of ovarian follicles through the last stages of vitellogenesis and choriogenesis.  相似文献   

18.
Micropylar apparatuses in insects are specialized regions of the eggshell through which sperm enters the oocyte. This work is an ultrastructural study and deals with the structure and morphogenesis of the micropylar appendage in the hymenopteran Eurytoma amygdali. The micropylar appendage is a 130 mum long cylindrical protrusion located at the posterior pole of the egg, unlike other insects i.e. Diptera. in which the micropylar apparatus is located at the anterior pole. In mature eggs there is a 0.4 mum wide pore (micropyle) at the tip of the appendage leading to a 6 mum wide micropylar canal. The canal contains an electron-lucent substance, it travels along the whole appendage and finally reaches the vitelline membrane of the oocyte. The vitelline membrane is covered by a wax layer and an electron-lucent layer, whereas the chorion surrounding the canal consists of a granular layer (fine and rough) and a columnar layer. The morphogenesis of the appendage starts in immature follicles: four central cells located at the posterior tip of the oocyte near the vitelline membrane, differing morphologically from the adjacent follicle cells. These central cells degenerate during early chorionic stages, thus assisting in the formation of the micropylar canal. The adjacent, peripherally located cells secrete the electron-lucent substance which fills the canal and at the same time, the fine granular layer is formed starting from the base towards the tip of the appendage. The secretion persists at late chorionic stages and results in the formation of the chorion around the micropylar canal. The extremely long (compared to other insects) micropylar appendage seems to facilitate the egg passage through the very thin and long ovipositor. The structure and morphogenesis of this appendage differs significantly from the micropylar apparatuses studied so far in other insects i.e. Diptera, and may reflect adaptational and evolutionary relationships.  相似文献   

19.
Drosophila embryo dorsoventral polarity is established by a maternally encoded signal transduction pathway in which three sequentially acting serine proteases, Gastrulation Defective, Snake and Easter, generate the ligand that activates the Toll receptor on the ventral side of the embryo. The spatial regulation of this pathway depends upon ventrally restricted expression of the Pipe sulfotransferase in the ovarian follicle during egg formation. Several recent observations have advanced our understanding of the mechanism regulating the spatially restricted activation of Toll. First, several protein components of the vitelline membrane layer of the eggshell have been determined to be targets of Pipe-mediated sulfation. Second, the processing of Easter by Snake has been identified as the first Pipe-dependent, ventrally-restricted processing event in the pathway. Finally, Gastrulation Defective has been shown to undergo Pipe-dependent, ventral localization within the perivitelline space and to facilitate Snake-mediated processing of Easter. Together, these observations suggest that Gastrulation Defective, localized on the interior ventral surface of the eggshell in association with Pipe-sulfated eggshell proteins, recruits and mediates an interaction between Snake and Easter. This event leads to ventrally-restricted processing and activation of Easter and consequently, localized formation of the Toll ligand, and Toll activation.  相似文献   

20.
Four genes expressed during the period of vitelline membrane formation are clustered within 8 kb of DNA in region 26A of the second chromosome. Temporal and quantitative difference in the profiles of accumulated RNA suggest that the genes are independently regulated although they are selectively expressed during the stages of vitelline membrane biosynthesis. In situ hybridization and S1 analyses of RNAs from fractionated eggchambers established that these genes are active only in the follicle cells. S1 mapping with in vitro synthesized RNA probes shows that three of the genes are tandemly oriented. All four appear to be intronless. In vitro translation products from hybrid-selected RNAs indicate that two of these genes code for major vitelline membrane proteins. Sequence analysis of these two genes support this conclusion. The cell- and stage-specific expression of the other two genes, encoding less abundant RNAs, suggests that they also play a role in early eggshell production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号