首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious tolerance is a term generally assigned to the process through which regulatory T cells (Tregs) transfer immunoregulatory properties to other T cells. In this study, we demonstrated that a similar process applies to human dendritic cells (DCs), albeit through a different mechanism. We induced and cloned proinsulin-specific Tregs using tolerogenic DCs and investigated mechanisms by which induced Ag-specific regulatory T cells (iaTregs) endorse the suppressive effects. iaTregs expressed FOXP3, programmed death-1, and membrane-bound TGF-β and upregulated IL-10 and CTLA-4 after stimulation with the cognate Ag. The iaTregs suppressed effector T cells only when both encountered the cognate Ags on the same APCs (linked suppression). This occurred independently of IL-10, TGF-β, programmed death-1, or CTLA-4. Instead, iaTregs used a granzyme B-mediated mechanism to kill B cells and monocytes, whereas proinflammatory DCs that resisted being killed were induced to upregulate the inhibitory receptors B7 (family) homolog 3 and ICOS ligand. These re-educated mature monocyte-derived dendritic cells (mDCs) suppressed effector T cells and induced IL-10-producing cells from the naive T cell pool. Our data indicated that human tolerogenic DCs confer infectious tolerance by inducing Ag-specific Tregs, which, in turn, re-educate proinflammatory mature DCs into DCs with regulatory properties.  相似文献   

2.
Tolerogenic dendritic cells (tolDCs) can induce the differentiation of immunosuppressive regulatory T cells and are therefore candidates for the prevention or treatment of various inflammatory diseases. Galangin, a major component of propolis and Alpinia officinarum, has well-established anti-inflammatory effects, but its ability to induce a tolerogenic state in DCs has not been demonstrated. In this study, we investigated the effects of galangin on DC differentiation and immune responses. In particular, we compared phenotypic and functional differences between DCs (Gal-DCs) generated by galangin treatment during DC differentiation and bone marrow-derived DCs. Gal-DCs were generated by adding culture medium containing various doses of galangin (1.8–18.5 µM) on 3 and 6 day. Upon lipopolysaccharide (100 ng/mL) stimulation for 24 h, Gal-DCs generated with 7.4 µM galangin treatment showed lower levels of CD86 and lower major histocompatibility complex class II antigen-presentation than those of bone marrow-derived DCs. Furthermore, Gal-DCs showed markedly increased programmed death ligand 1 expression and IL-10 production via the activation of mitogen-activated protein kinases. Interestingly, Gal-DCs co-cultured with allogeneic CD4 T cells exhibited the reduced cell proliferation and differentiation into Th1-, Th2-, and Th17-type cell; instead, Gal-DCs contributed to the induction of CD4+CD25+Foxp3+ Tregs. Taken together, our data suggest that exposure to galangin during DC differentiation confers tolerogenic properties, efficiently inducing Th cell differentiation to immunosuppressive Tregs. These findings provide new insights into the molecular mechanism underlying the anti-inflammatory effects of galangin on DCs.  相似文献   

3.
Autoimmune diabetes results from a breakdown of self-tolerance that leads to T cell-mediated beta-cell destruction. Abnormal maturation and other defects of dendritic cells (DCs) have been associated with the development of diabetes. Evidence is accumulating that self-tolerance can be restored and maintained by semimature DCs induced by GM-CSF. We have investigated whether GM-CSF is a valuable strategy to induce semimature DCs, thereby restoring and sustaining tolerance in NOD mice. We found that treatment of prediabetic NOD mice with GM-CSF provided protection against diabetes. The protection was associated with a marked increase in the number of tolerogenic immature splenic DCs and in the number of Foxp3+CD4+CD25+ regulatory T cells (Tregs). Activated DCs from GM-CSF-protected mice expressed lower levels of MHC class II and CD80/CD86 molecules, produced more IL-10 and were less effective in stimulating diabetogenic CD8+ T cells than DCs of PBS-treated NOD mice. Adoptive transfer experiments showed that splenocytes of GM-CSF-protected mice did not transfer diabetes into NOD.SCID recipients. Depletion of CD11c+ DCs before transfer released diabetogenic T cells from the suppressive effect of CD4+CD25+ Tregs, thereby promoting the development of diabetes. These results indicated that semimature DCs were required for the sustained suppressive function of CD4+CD25+ Tregs that were responsible for maintaining tolerance of diabetogenic T cells in NOD mice.  相似文献   

4.
An emerging concept is that different types of dendritic cells (DCs) initiate different immune outcomes, such as tolerance vs inflammation. In this study, we have characterized the DCs from the lung draining lymph nodes of mice immunized for allergic airway inflammation or tolerance and examined their interactions with CD4(+) T cells. The DC population derived from tolerized mice was predominantly CD11c(+), B220(+), Gr-1(+), CD11b(-), and MHC class II(low), which resembled plasmacytoid-type DCs whereas DCs from the inflammatory condition were largely CD11c(+), B220(-), Gr-1(-), CD11b(+), and MHC class II(high) resembling myeloid-type DCs. The DCs from the tolerogenic condition were poor inducers of T cell proliferation. DCs from both conditions induced T cell IL-4 production but the T cells cultured with tolerogenic DCs were unresponsive to IL-4 as indicated by inhibition of STAT6 activation and expression of growth factor-independent 1, which has been recently shown to be important for STAT6-activated Th2 cell expansion. Our data suggest that airway tolerance vs inflammation is determined by the DC phenotype in lung draining lymph nodes.  相似文献   

5.
Naturally occurring Foxp3+CD25+CD4+ regulatory T cells (Treg) have initially been described as anergic cells; however, more recent in vivo studies suggest that Tregs vigorously proliferate under both homeostatic as well as inflammatory conditions. We have previously identified a subset of murine CD4+ Tregs, which is characterized by expression of the integrin alphaEbeta7 and which displays an effector/memory-like phenotype indicative of Ag-specific expansion and differentiation. In the present study, the alphaE+ Treg subset was found to contain a large fraction of cycling cells under homeostatic conditions in healthy mice. Using an adoptive transfer system of Ag-specific T cells, we could demonstrate that the vast majority of transferred natural, naive-like CD25+CD4+ Tregs acquired expression of the integrin alphaEbeta7 upon tolerogenic application of Ag via the oral route. In addition, using the same system, Foxp3+ Tregs could be de novo induced from conventional naive CD25-CD4+ T cells, and this conversion was associated with concomitant expression of alphaE. These findings suggest that Tregs expressing the integrin alphaE are effector/memory Tregs with a high turnover rate that can develop in the periphery upon Ag contact under tolerogenic conditions, both from thymic-derived CD25+CD4+ Tregs with a naive-like phenotype as well as from conventional naive T cells.  相似文献   

6.
Bone marrow-derived APC are critical for both priming effector/memory T cell responses to pathogens and inducing peripheral tolerance in self-reactive T cells. In particular, dendritic cells (DC) can acquire peripheral self-Ags under steady state conditions and are thought to present them to cognate T cells in a default tolerogenic manner, whereas exposure to pathogen-associated inflammatory mediators during the acquisition of pathogen-derived Ags appears to reprogram DCs to prime effector and memory T cell function. Recent studies have confirmed the critical role of DCs in priming CD8 cell effector responses to certain pathogens, although the necessity of steady state DCs in programming T cell tolerance to peripheral self-Ags has not been directly tested. In the current study, the role of steady state DCs in programming self-reactive CD4 cell peripheral tolerance was assessed by combining the CD11c-diphtheria toxin receptor transgenic system, in which DC can be depleted via treatment with diphtheria toxin, with a TCR-transgenic adoptive transfer system in which either naive or Th1 effector CD4 cells are induced to undergo tolerization after exposure to cognate parenchymally derived self-Ag. Although steady state DCs present parenchymal self-Ag and contribute to the tolerization of cognate naive and Th1 effector CD4 cells, they are not essential, indicating the involvement of a non-DC tolerogenic APC population(s). Tolerogenic APCs, however, do not require the cooperation of CD4(+)CD25(+) regulatory T cells. Similarly, DC were required for maximal priming of naive CD4 cells to vaccinia viral-Ag, but priming could still occur in the absence of DC.  相似文献   

7.
Protosappanin A (PrA), an immunosuppressive ingredient of the medicinal herb Caesalpinia sappan L, prolongs heart allograft survival in rats, possibly by impairing the function of antigen-presenting cells (APCs). We examined the effects of PrA on the maturation and function of dendritic cells (DCs), a potent class of APCs, and the downstream cell–cell and intracellular signaling pathways mediating the immunosuppressive activity of PrA. PrA inhibited LPS-stimulated maturation of Wistar rat DCs in vitro as reflected by reduced expression of costimulatory molecules (CD80 and CD86) and reduced expression of TLR4 and NF-κB, two critical signaling components for antigen recognition. PrA also enhanced the release of IL-10 and decreased the release of IL-12 from DCs, but had no effect on the production of TGF-ß. In mixed cultures, Wistar DCs pretreated with PrA impaired the proliferation of Sprague Dawley (SD) rat T cells while promoting the expansion of SD rat CD4+CD25+ regulatory T cells (Tregs). Both oral PrA treatment and infusion of PrA-pretreated Wistar DCs prolonged cardiac allograft survival (Wistar donor, SD recipient) and expanded recipient CD4+CD25+Foxp3+ Tregs. Donor spleen cells, but not spleen cells from a third rat strain (DA), supported the expansion of recipient CD4+CD25+Foxp3+ Tregs and suppressed recipient T cell proliferation. We conclude that PrA triggers a tolerogenic state in DCs that allows for the induction of alloantigen-specific Tregs and the suppression of allograft rejection in vivo.  相似文献   

8.
We have previously shown that neutrophilic elastase converts human immature dendritic cells (DCs) into TGF-β secreting cells and reduces its allostimulatory ability. Since TGF-β has been involved in regulatory T cells (Tregs) induction we analyzed whether elastase or neutrophil-derived culture supernatant treated DCs induce CD4+FOXP3+ Tregs in a mixed lymphocyte reaction (MLR). We found that elastase or neutrophil-derived culture supernatant treated DCs increased TGF-β and decreased IL-6 production. Together with this pattern of cytokines, we observed a higher number of CD4+FOXP3+ cells in the MLR cultures induced by elastase or neutrophil-derived culture supernatant treated DCs but not with untreated DCs. The higher number of CD4+FOXP3+ T cell population was not observed when the enzymatic activity of elastase was inhibited with an elastase specific inhibitor and also when a TGF-β1 blocking antibody was added during the MLR culture. The increased number of CD4+ that express FOXP3 was also seen when CD4+CD25- purified T cells were cocultured with the TGF-β producing DCs. Furthermore, these FOXP3+ T cells showed suppressive activity in vitro.These results identify a novel mechanism by which the tolerogenic DCs generated by elastase exposure contribute to the immune regulation and may be relevant in the pathogenesis of several lung diseases where the inflammatory infiltrate contains high numbers of neutrophils and high elastase concentrations.  相似文献   

9.
It is well known that adoptive transfer of donor-derived tolerogenic dendritic cells (DCs) helps to induce immune tolerance. RelB, one of NF-κB subunits, is a critical element involved in DC maturation. In the present study, our results showed tolerogenic DCs could be acquired via silencing RelB using small interfering RNA. Compared with imDCs, the tolerogenic DCs had more potent ability to inhibit mixed lymphocyte reaction (MLR) and down-regulate Th1 cytokines and prompt the production of Th2 cytokines. They both mediated immune tolerance via the increased of T cell apoptosis and generation of regulatory T cells. Administration of donor-derived tolerogenic DCs significantly prevented the allograft rejection and prolonged the survival time in a murine heart transplantation model. Our results demonstrate donor-derived, RelB-shRNA induced tolerogenic DCs can significantly induce immune tolerance in vitro and in vivo.  相似文献   

10.
Progressing tumors in humans and mice are frequently infiltrated by a highly heterogeneous population of inflammatory myeloid cells that contribute to tumor growth. Among these cells, inflammatory Gr-1(+) monocytes display a high developmental plasticity in response to specific microenvironmental signals, leading to diverse immune functions. These observations raise the question of the immune mechanisms by which inflammatory monocytes may contribute to tumor development. In this study, we found that adoptive transfer of normal inflammatory Gr-1(+) monocytes in tumor-bearing mice promotes tumor growth. In this tumoral environment, these monocytes can differentiate into tolerogenic dendritic cells (DCs) that produce IL-10 and potently induce regulatory T cell responses in vivo. Moreover, diverting the differentiation of Gr-1(+) monocytes into tolerogenic DCs by forced expression of IL-10 soluble receptor and IL-3 in tumor cells improves host immunosurveillance by reducing the regulatory T cell frequency and by inducing immunogenic DCs in the tumor. As a consequence, tumor growth is strongly reduced. Our findings indicate that Gr-1(+) monocytes represent a valuable target for innovative immunotherapeutic strategies against cancer.  相似文献   

11.
Tolerogenic dendritic cells (DCs) can induce regulatory T cells and dampen pathogenic T cell responses. Therefore, they are possible therapeutic targets in autoimmune diseases. In this study we investigated whether mouse tolerogenic DCs are induced by the phytonutrient carvacrol, a molecule with known anti-inflammatory properties, in combination with a physiological stress. We show that treatment of DCs with carvacrol and thermal stress led to the mRNA expression of both pro- and anti-inflammatory mediators. Interestingly, treated DCs with this mixed gene expression profile had a reduced ability to activate pro-inflammatory T cells. Furthermore, these DCs increased the proportion of FoxP3+ regulatory T cells. In vivo, prophylactic injection of carvacrol-thermal stress treated DCs pulsed with the disease inducing antigen was able to suppress disease in a mouse model of arthritis. These findings suggest that treatment of mouse bone marrow derived DCs with carvacrol and thermal stress induce a functionally tolerogenic DC that can suppress autoimmune arthritis. Herewith carvacrol seems to offer novel opportunities for the development of a dietary based intervention in chronic inflammatory diseases.  相似文献   

12.
Dendritic cells (DCs) induce and regulate T-cell responses, and tolerogenic DCs can promote the development of regulatory T cells with suppressive activity. The possibility of manipulating DCs using different pharmacological or biological agents, enabling them to exert tolerogenic activities, could be exploited to better control a variety of chronic inflammatory conditions, from autoimmune diseases to allograft rejection.  相似文献   

13.
Dendritic cells (DCs) can initiate immune responses or confer immune tolerance depending on functional status. LPS-induced DC maturation is defined by enhanced surface expression of CD80 and CD86. MicroRNAs are critical for the regulation of DC function and immunity, and the microRNA let-7i was upregulated during LPS-induced DC maturation. Downregulation of let-7i significantly impeded DC maturation as evidenced by reduced CD80 and CD86 expression. DCs stimulated by LPS promoted T cell proliferation in coculture, whereas LPS-stimulated DCs with downregulated let-7i were not effective at stimulating T cell proliferation but promoted expansion of the regulatory T cell (Treg) population. There were two subpopulations of LPS-stimulated DCs with downregulated let-7i, CD86(-) and CD86(+), and it was the CD86(-) DCs that were more effective in inducing T cell hyporesponsiveness and enhancing Treg numbers, indicating that this DC population had tolerogenic properties. Furthermore, Tregs with upregulated IL-10 underscored the tolerogenic effect of CD86(-) DCs. Suppressor of cytokine signaling 1 (SOCS1), a crucial mediator of DC maturation, was confirmed as a let-7i target gene by luciferase construct assay. Suppression or overexpression of let-7i caused reciprocal alterations in SOCS1 protein expression, but had no significant effects on SOCS1 mRNA levels, indicating that let-7i regulated SOCS1 expression by translational suppression. The modulation of SOCS1 protein by let-7i was mainly restricted to CD86(-) DCs. Our study demonstrates that let-7i regulation of SOCS1 is critical for LPS-induced DC maturation and immune function. Dynamic regulation of let-7i may fine-tune immune responses by inducing Ag-specific immune tolerance.  相似文献   

14.
Dendritic cell (DC) vaccines offer a robust platform for the development of cancer vaccines, but their effectiveness is thought to be limited by T regulatory cells (Tregs). Recombinant adenoviruses (RAdV) have been used successfully to engineer tumor antigen expression in DCs, but the impact of virus transduction on susceptibility to suppression by Tregs is unknown. We investigated the functional consequences of exposure to adenovirus on interactions between human monocyte-derived DCs and Tregs. Since the development of Tregs is linked to that of pro-inflammatory Th17 cells, the role of Th17 cells and IL-17-producing Tregs in the context of DC-based immunotherapies was also investigated. We found that Tregs potently suppressed the co-stimulatory capacity of RAdV-transduced DCs, regardless of whether the DCs were maturated by inflammatory cytokines or by exposure to Th1 or Th17 cells. Furthermore, exposure of Tregs to RAdV-exposed DCs increased IL-17 production and suppressive capacity, and correlated with enhanced secretion of IL-1β and IL-6 by DCs. The findings that DCs exposed to RAdV are suppressed by Tregs, promote Treg plasticity, and enhance Treg suppression indicates that strategies to limit Tregs will be required to enhance the efficacy of such DC-based immunotherapies.  相似文献   

15.
CD25(+)CD4(+) regulatory T cells (Tregs) are required for the maintenance of peripheral tolerance to certain self Ags. In this study, the requirements for murine Treg-suppressive activity and proliferation were examined in the context of the maturation of myeloid dendritic cells (DCs). We find that the suppressive function of Tregs is critically dependent on immature DCs and is readily reversed by the maturation of DCs induced by GM-CSF, but does not require TLR activation of either DCs or Tregs. In contrast, reversal of Treg anergy is dependent on TLR activation of DCs, and involves the potentiation of Treg responsiveness to IL-2 by cooperative effects of IL-6 and IL-1, both of which are produced by TLR-activated, mature DCs. Thus, proinflammatory cytokines produced by TLR-activated, mature DCs are required for reversal of Treg anergy, but are not required to overcome Treg suppression.  相似文献   

16.
CD4+CD25+Foxp3+ regulatory T cells (Tregs) restrict inflammatory responses to self and nonself. Aberrant Treg activity is pathologic: Insufficient Treg activity is implicated in autoimmunity, allergy, and graft-versus-host-disease; overabundant activity is implicated in chronic infection and cancer. Tregs require IL-2 for their expansion and acquisition/execution of suppressor function; however, because Tregs cannot produce IL-2, they depend on IL-2 from an exogenous source. Until now, that IL-2 source had not been established. We asked whether dendritic cells (DCs) could supply IL-2 to Tregs and, if so, what was required for that delivery. We used flow cytometry, IL-2 ELISPOT, RT-qPCR, and IL-2 promoter-driven reporter assays to measure intracytoplasmic IL-2, secreted protein, IL-2 message and IL-2 promoter activity in bone marrow-derived (BMDC) and splenic DCs. We examined conjugate formation between Tregs, conventional CD4+ cells, and IL-2-expressing DCs. We measured Treg levels of CD25, Foxp3, and suppressor function after co-culture with IL-2 sufficient and IL-2−/− DCs. We generated IL-2-mCherry-expressing DCs and used epifluorescence microscopy and flow cytometry to track IL-2 transfer to Tregs and test requirements for transfer. Between 0.7 to 2.4% of DCs constitutively produced IL-2 and diverted IL-2 secretion to Tregs by preferentially forming conjugates with them. Uptake of DC IL-2 by Tregs required cell-cell contact and CD25. Tregs increased levels of CD25 and Foxp3 from baseline and showed greater suppressor function when co-cultured with IL-2-sufficient DCs, but not when co-cultured with IL-2−/− DCs. Exogenous IL-2, added in excess of 500 U/ml to co-cultures with IL-2−/− DCs, restored Treg suppressor function. These data support a model of juxtacrine delivery of IL-2 from DCs to Tregs and suggest that a subset of DCs modulates Treg function through controlled, spatial delivery of IL-2. Knowledge of how DCs regulate Tregs should be integrated into the design of interventions intended to alter Treg function.  相似文献   

17.
Effective immunotherapy for type 1 diabetes (T1D) relies on active induction of peripheral tolerance. Myeloid-derived suppressor cells (MDSCs) play a critical role in suppressing immune responses in various pathologic settings via multiple mechanisms, including expansion of regulatory T cells (Tregs). In this study, we investigated whether MDSCs could act as APCs to induce expansion of Ag-specific Tregs, suppress T cell proliferation, and prevent autoimmune T1D development. We found that MDSC-mediated expansion of Tregs and T cell suppression required MHC-dependent Ag presentation. A murine T1D model was established in INS-HA/RAG(-/-) mice in which animals received CD4-HA-TCR transgenic T cells via adoptive transfer. We found a significant reduction in the incidence of diabetes in recipients receiving MDSC plus HA, but not OVA peptide, leading to 75% diabetes-free mice among the treated animals. To test further whether MDSCs could prevent diabetes onset in NOD mice, nondiabetic NOD/SCID mice were injected with inflammatory T cells from diabetic NOD mice. MDSCs significantly prevented diabetes onset, and 60% of MDSC-treated mice remained diabetes free. The pancreata of treated mice showed significantly lower levels of lymphocyte infiltration in islet and less insulitis compared with that of the control groups. The protective effects of MDSCs might be mediated by inducing anergy in autoreactive T cells and the development of CD4(+)CD25(+)Foxp3(+) Tregs. Thist study demonstrates a remarkable capacity of transferred MDSCs to downregulate Ag-specific autoimmune responses and prevent diabetes onset, suggesting that MDSCs possess great potential as a novel cell-based tolerogenic therapy in the control of T1D and other autoimmune diseases.  相似文献   

18.
Earlier, we have shown that GM-CSF-exposed CD8α- DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3- expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25- effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity.  相似文献   

19.
Previously, it has been shown that heat shock protein 70 (HSP70) can prevent inflammatory damage in experimental autoimmune disease models. Various possible underlying working mechanisms have been proposed. One possibility is that HSP70 induces a tolerogenic phenotype in dendritic cells (DCs) as a result of the direct interaction of the antigen with the DC. Tolerogenic DCs can induce antigen-specific regulatory T cells and dampen pathogenic T cell responses. We show that treatment of murine DCs with either mycobacterial (Mt) or mouse HSP70 and pulsed with the disease-inducing antigen induced suppression of proteoglycan-induced arthritis (PGIA), although mouse HSP70-treated DCs could ameliorate PGIA to a greater extent. In addition, while murine DCs treated with Mt- or mouse HSP70 had no significantly altered phenotype as compared to untreated DCs, HSP70-treated DCs pulsed with pOVA (ovalbumin peptide 323–339) induced a significantly increased production of IL-10 in pOVA-specific T cells. IL-10-producing T cells were earlier shown to be involved in Mt HSP70-induced suppression of PGIA. In conclusion, this study indicates that Mt- and mouse HSP70-treated BMDC can suppress PGIA via an IL-10-producing T cell-dependent manner.  相似文献   

20.
It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (Pc-iRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号