首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of glycosphingolipids is strictly regulated during the mitotic cell cycle. Before the G1-to-S transition, the ceramide and glucosylceramide concentration is elevated. Ceramide induces apoptosis synergistically with the pro-apoptotic protein prostate apoptosis response 4 (PAR-4) that may be asymmetrically inherited during cell division. Only one daughter cell dies shortly after mitosis, a mechanism we suggested to regulate the number of neural stem cells during embryonic development. The progeny cells, however, may protect themselves by converting ceramide to glucosylceramide and other glycosphingolipids. In particular, complex gangliosides have been found to sustain cell survival and differentiation. The cell cycle may thus be a turning point for (glyco)sphingolipid metabolism and explain rapid changes of the sphingolipid composition in cells that undergo mitotic cell-fate decisions. In the proposed model termed "Shiva cycle", progression through the cell cycle, differentiation, or apoptosis may rely on a delicate balance of (glyco)sphingolipid second messengers that modulate the retinoblastoma-dependent G1-to-S transition or caspase-dependent G1-to-apoptosis program. Ceramide-induced cell cycle delay at G0/G1 is either followed by ceramide-induced apoptosis or by conversion of ceramide to glucosylceramide, a proposed key regulatory rheostat that rescues cells from re-entry into a life/death decision at G1-to-S. We propose a mechanistic model for sphingolpid-induced protein scaffolds ("slip") that regulate cell-fate decisions and will discuss the biological consequences and pharmacological potential of manipulating the (glyco)sphingolipid-dependent cell fate program in cancer and stem cells.  相似文献   

2.
The establishment of homeostasis among cell growth, differentiation, and apoptosis is of key importance for organogenesis. Stem cells respond to temporally and spatially regulated signals by switching from mitotic proliferation to asymmetric cell division and differentiation. Executable computer models of signaling pathways can accurately reproduce a wide range of biological phenomena by reducing detailed chemical kinetics to a discrete, finite form. Moreover, coordinated cell movements and physical cell-cell interactions are required for the formation of three-dimensional structures that are the building blocks of organs. To capture all these aspects, we have developed a hybrid executable/physical model describing stem cell proliferation, differentiation, and homeostasis in the Caenorhabditis elegans germline. Using this hybrid model, we are able to track cell lineages and dynamic cell movements during germ cell differentiation. We further show how apoptosis regulates germ cell homeostasis in the gonad, and propose a role for intercellular pressure in developmental control. Finally, we use the model to demonstrate how an executable model can be developed from the hybrid system, identifying a mechanism that ensures invariance in fate patterns in the presence of instability.  相似文献   

3.
Stem cell self-renewal versus differentiation fate decisions are difficult to characterize and analyze due to multiple competing rate processes occurring simultaneously among heterogeneous cell subpopulations. To address this challenge, we describe a mathematical model for cell population dynamics that allows flow cytometry measurement of population distributions of molecular markers to be deconvoluted in terms of subpopulation-specific rate parameters distinguishing commitment to differentiation, proliferation of differentiated cells, and proliferation of undifferentiated cells (i.e., self-renewal). We validate this model-based parameter determination by means of dedicated, independent cell-tracking studies. Our approach facilitates interpretation of relationships underlying effects of external cues on cell responses in differentiating cultures via intracellular signals.  相似文献   

4.
Thymus (T) and natural killer (NK) lymphocytes are important barriers against diseases. Therefore, it is necessary to understand regulatory mechanisms related to the cell fate decisions involved in the production of these cells. Although some individual information related to T and NK lymphocyte cell fate decisions have been revealed, the related network and its dynamical characteristics still have not been well understood. By integrating individual information and comparing with experimental data, we construct a comprehensive regulatory network and a logical model related to T and NK lymphocyte differentiation. We aim to explore possible mechanisms of how each lineage differentiation is realized by systematically screening individual perturbations. When determining the perturbation strategies, the state transition can be used to identify the roles of specific genes in cell type selection and reprogramming. In agreement with experimental observations, the dynamics of the model correctly restates the cell differentiation processes from common lymphoid progenitors to CD4+ T cells, CD8+ T cells, and NK cells. Our analysis reveals that some specific perturbations can give rise to directional cell differentiation or reprogramming. We test our in silico results by using known experimental observations. The integrated network and the logical model presented here might be a good candidate for providing qualitative mechanisms of cell fate specification involved in T and NK lymphocyte cell fate decisions.Supplementary informationThe online version contains supplementary material available at 10.1007/s10867-021-09563-y.  相似文献   

5.
Towards predictive models of stem cell fate   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.

Background

Notch signaling plays a critical role in multiple developmental programs and not surprisingly, the Notch pathway has also been implicated in the regulation of many adult stem cells, such as those in the intestine, skin, lungs, hematopoietic system, and muscle.

Scope of review

In this review, we will first describe molecular mechanisms of Notch component modulation including recent advances in this field and introduce the fundamental principles of Notch signaling controlling cell fate decisions. We will then illustrate its important and varied functions in major stem cell model systems including: Drosophila and mammalian intestinal stem cells and mammalian skin, lung, hematopoietic and muscle stem cells.

Major conclusions

The Notch receptor and its ligands are controlled by endocytic processes that regulate activation, turnover, and recycling. Glycosylation of the Notch extracellular domain has important modulatory functions on interactions with ligands and on proper receptor activity. Notch can mediate cell fate decisions including proliferation, lineage commitment, and terminal differentiation in many adult stem cell types. Certain cell fate decisions can have precise requirements for levels of Notch signaling controlled through modulatory regulation.

General significance

We describe the current state of knowledge of how the Notch receptor is controlled through its interaction with ligands and how this is regulated by associated factors. The functional consequences of Notch receptor activation on cell fate decisions are discussed. We illustrate the importance of Notch's role in cell fate decisions in adult stem cells using examples from the intestine, skin, lung, blood, and muscle. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

8.
Multipotent stem or progenitor cells undergo a sequential series of binary fate decisions, which ultimately generate the diversity of differentiated cells. Efforts to understand cell fate control have focused on simple gene regulatory circuits that predict the presence of multiple stable states, bifurcations and switch-like transitions. However, existing gene network models do not explain more complex properties of cell fate dynamics such as the hierarchical branching of developmental paths. Here, we construct a generic minimal model of the genetic regulatory network controlling cell fate determination, which exhibits five elementary characteristics of cell differentiation: stability, directionality, branching, exclusivity, and promiscuous expression. We argue that a modular architecture comprising repeated network elements reproduces these features of differentiation by sequentially repressing selected modules and hence restricting the dynamics to lower dimensional subspaces of the high-dimensional state space. We implement our model both with ordinary differential equations (ODEs), to explore the role of bifurcations in producing the one-way character of differentiation, and with stochastic differential equations (SDEs), to demonstrate the effect of noise on the system. We further argue that binary cell fate decisions are prevalent in cell differentiation due to general features of the underlying dynamical system. This minimal model makes testable predictions about the structural basis for directional, discrete and diversifying cell phenotype development and thus can guide the evaluation of real gene regulatory networks that govern differentiation.  相似文献   

9.
Cartilage patterning and differentiation are prerequisites for skeletal development through endochondral ossification (EO). Multipotential mesenchymal cells undergo a complex process of cell fate determination to become chondroprogenitors and eventually differentiate into chondrocytes. These developmental processes require the orchestration of cell-cell and cell-matrix interactions. In this review, we present limb bud development as a model for cartilage patterning and differentiation. We summarize the molecular and cellular events and signaling pathways for axis patterning, cell condensation, cell fate determination, digit formation, interdigital apoptosis, EO, and joint formation. The interconnected nature of these pathways underscores the effects of genetic and teratogenic perturbations that result in skeletal birth defects. The topics reviewed also include limb dysmorphogenesis as a result of genetic disorders and environmental factors, including FGFR, GLI3, GDF5/CDMP1, Sox9, and Cbfa1 mutations, as well as thalidomide- and alcohol-induced malformations. Understanding the complex interactions involved in cartilage development and EO provides insight into mechanisms underlying the biology of normal cartilage, congenital disorders, and pathologic adult cartilage.  相似文献   

10.
During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal.  相似文献   

11.
The increasing use of microwave devices over recent years has meant the bioeffects of microwave exposure have been widely investigated and reported. However the exact biological fate of bone marrow MSCs (BM-MSCs) after microwave radiation remains unknown. In this study, the potential cytotoxicity on MSC proliferation, apoptosis, cell cycle, and in vitro differentiation were assayed following 2.856 GHz microwave exposure at a specific absorption rate (SAR) of 4 W/kg. Importantly, our findings indicated no significant changes in cell viability, cell division and apoptosis after microwave treatment. Furthermore, we detected no significant effects on the differentiation ability of these cells in vitro, with the exception of reduction in mRNA expression levels of osteopontin (OPN) and osteocalcin (OCN). These findings suggest that microwave treatment at a SAR of 4 W/kg has undefined adverse effects on BM-MSCs. However, the reduced-expression of proteins related to osteogenic differentiation suggests that microwave can the influence at the mRNA expression genetic level.  相似文献   

12.
During tissue and organ development and maintenance, the dynamic regulation of cellular proliferation and differentiation allows cells to build highly elaborate structures. The development of the vertebrate retina or the maintenance of adult intestinal crypts, for instance, involves the arrangement of newly created cells with different phenotypes, the proportions of which need to be tightly controlled. While some of the basic principles underlying these processes developing and maintaining these organs are known, much remains to be learnt from how cells encode the necessary information and use it to attain those complex but reproducible arrangements. Here, we review the current knowledge on the principles underlying cell population dynamics during tissue development and homeostasis. In particular, we discuss how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms. We propose a framework, involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions. This framework, which also applies to systems much more amenable to quantitative analysis like differentiating embryonic stem cells, links gene expression programmes with cell population dynamics.  相似文献   

13.
14.
15.
16.
It is well known that clonal cells can make different fate decisions, but it is unclear whether these decisions are determined during, or before, a cell's own lifetime. Here, we engineered an endogenous fluorescent reporter for the pluripotency factor OCT4 to study the timing of differentiation decisions in human embryonic stem cells. By tracking single‐cell OCT4 levels over multiple cell cycle generations, we found that the decision to differentiate is largely determined before the differentiation stimulus is presented and can be predicted by a cell's preexisting OCT4 signaling patterns. We further quantified how maternal OCT4 levels were transmitted to, and distributed between, daughter cells. As mother cells underwent division, newly established OCT4 levels in daughter cells rapidly became more predictive of final OCT4 expression status. These results imply that the choice between developmental cell fates can be largely predetermined at the time of cell birth through inheritance of a pluripotency factor.  相似文献   

17.
18.
One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants, the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis; however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium, the somatic tissues consist of four concentric cell layers that surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. However, without a robust model of anther cell fate acquisition based on careful observation of wild-type anther ontogeny, interpretation of cell fate mutants is limited. To address this, the pattern of cell proliferation, expansion, and differentiation was tracked in three dimensions over 30 days of wild-type (W23) anther development, using anthers stained with propidium iodide (PI) and/or 5-ethynyl-2′-deoxyuridine (EdU) (S-phase label) and imaged by confocal microscopy. The pervading lineage model of anther development claims that new cell layers are generated by coordinated, oriented cell divisions in transient precursor cell types. In reconstructing anther cell division patterns, however, we can only confirm this for the origin of the middle layer (ml) and tapetum, while young anther development appears more complex. We find that each anther cell type undergoes a burst of cell division after specification with a characteristic pattern of both cell expansion and division. Comparisons between two inbreds lines and between ab- and adaxial anther florets indicated near identity: anther development is highly canalized and synchronized. Three classical models of plant organ development are tested and ruled out; however, local clustering of developmental events was identified for several processes, including the first evidence for a direct relationship between the development of ml and tapetal cells. We speculate that small groups of ml and tapetum cells function as a developmental unit dedicated to the development of a single pollen grain.  相似文献   

19.
Osteoporosis is characterized by reduced bone formation and accumulation of adipocytes in the bone marrow compartment. The decrease in bone mass results from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The deficiency of bone cells to replace the resorpted bone can be due to a preferential differentiation of bone marrow stromal cells into adipocytes at the expense of osteoblasts. Consequently, the processes that control the differentiation of osteoclasts, osteoblasts and adipocytes play a crucial role in bone metabolism. It is known that epigenetic mechanisms are critical regulator of the differentiation programs for cell fate and moreover are subject to changes during aging. Here, we summarize recent findings on the role of epigenetics in the modulation of mechanisms that may be associated with osteoporosis. In particular, we focus on disturbances in the bone remodeling process described in human studies that address the epigenetic regulation of the osteoblast/adipocyte balance.  相似文献   

20.
The epigenetic states of key regulatory genes must be altered to drive cell fate decisions in differentiating cells. This process must be coupled, at least transiently, to the DNA replication machinery. Only a few genes, however, have been shown to require DNA replication for their activation or repression upon induction of differentiation. We have developed a methodology for examining how gene expression is coupled to cell division during the early stages of differentiation of embryonal carcinoma (EC) cells. Using this approach, we find that the expression of the 5-hydroxytryptamine (serotonin) receptor 2C (Htr2c) is strongly increased in the second division after all-trans retinoic acid addition. We propose that the epigenetic activation of Htr2c in EC cells results from a chromatin remodeling process that requires at least two passages through S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号