首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Sendai virus (SeV) is an enveloped nonsegmented negative‐strand RNA virus that belongs to the genus Respirovirus of the Paramyxoviridae family. As a model pathogen, SeV has been extensively studied to define the basic biochemical and molecular biologic properties of the paramyxoviruses. In addition, SeV‐infected host cells were widely employed to uncover the mechanism of innate immune response. To identify proteins involved in the SeV infection process or the SeV‐induced innate immune response process, system‐wide evaluations of SeV–host interactions have been performed. cDNA microarray, siRNA screening and phosphoproteomic analysis suggested that multiple signaling pathways are involved in SeV infection process. Here, to study SeV–host interaction, a global quantitative proteomic analysis was performed on SeV‐infected HEK 293T cells. A total of 4699 host proteins were quantified, with 742 proteins being differentially regulated. Bioinformatics analysis indicated that regulated proteins were mainly involved in “interferon type I (IFN‐I) signaling pathway” and “defense response to virus,” suggesting that these processes play roles in SeV infection. Further RNAi‐based functional studies indicated that the regulated proteins, tripartite motif (TRIM24) and TRIM27, affect SeV‐induced IFN‐I production. Our data provided a comprehensive view of host cell response to SeV and identified host proteins involved in the SeV infection process or the SeV‐induced innate immune response process.  相似文献   

2.
The innate immune response constitutes the first line of defense against infections. Pattern recognition receptors recognize pathogen structures and trigger intracellular signaling pathways leading to cytokine and chemokine expression. Reactive oxygen species (ROS) are emerging as an important regulator of some of these pathways. ROS directly interact with signaling components or induce other post-translational modifications such as S-glutathionylation, thereby altering target function. Applying live microscopy, we have demonstrated that herpes simplex virus (HSV) infection induces early production of ROS that are required for the activation of NF-κB and IRF-3 pathways and the production of type I IFNs and ISGs. All the known receptors involved in the recognition of HSV were shown to be dependent on the cellular redox levels for successful signaling. In addition, we provide biochemical evidence suggesting S-glutathionylation of TRAF family proteins to be important. In particular, by performing mutational studies we show that S-glutathionylation of a conserved cysteine residue of TRAF3 and TRAF6 is important for ROS-dependent activation of innate immune pathways. In conclusion, these findings demonstrate that ROS are essential for effective activation of signaling pathways leading to a successful innate immune response against HSV infection.  相似文献   

3.
4.
In general, in mammalian cells, cytosolic DNA viruses are sensed by cyclic GMP-AMP synthase (cGAS), and RNA viruses are recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, triggering a series of downstream innate antiviral signaling steps in the host. We previously reported that measles virus (MeV), which possesses an RNA genome, induces rapid antiviral responses, followed by comprehensive downregulation of host gene expression in epithelial cells. Interestingly, gene ontology analysis indicated that genes encoding mitochondrial proteins are enriched among the list of downregulated genes. To evaluate mitochondrial stress after MeV infection, we first observed the mitochondrial morphology of infected cells and found that significantly elongated mitochondrial networks with a hyperfused phenotype were formed. In addition, an increased amount of mitochondrial DNA (mtDNA) in the cytosol was detected during progression of infection. Based on these results, we show that cytosolic mtDNA released from hyperfused mitochondria during MeV infection is captured by cGAS and causes consequent priming of the DNA sensing pathway in addition to canonical RNA sensing. We also ascertained the contribution of cGAS to the in vivo pathogenicity of MeV. In addition, we found that other viruses that induce downregulation of mitochondrial biogenesis as seen for MeV cause similar mitochondrial hyperfusion and cytosolic mtDNA-priming antiviral responses. These findings indicate that the mtDNA-activated cGAS pathway is critical for full innate control of certain viruses, including RNA viruses that cause mitochondrial stress.  相似文献   

5.
Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-α/β) response is derived from several cell types and induced independently of TLR9. In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages and fibroblasts, where the virus was able to replicate, HSV-induced IFN-α/β production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of pathogen recognition are active, which operate in cell-type- and time-dependent manners to trigger expression of type I IFN and coordinate the antiviral response.  相似文献   

6.
7.
8.
9.
Oshiumi H  Matsumoto M  Seya T 《Uirusu》2011,61(2):153-161
Viral RNA is recognized by RIG-I-like receptors and Toll-like receptors. RIG-I is a cytoplasmic viral RNA sensor. High Mobility Group Box (HMGB) proteins and DExD/H box RNA helicases, such as DDX3 and 60, associate with viral RNA. Those proteins promotes the RIG-I binding to viral RNA. RIG-I triggers the signal via IPS-1 adaptor molecule to induce type I IFN. RIG-I harbors Lys63-linked polyubiquitination by Riplet and TRIM25 ubiquitin ligases. The polyubiquitination is essential for RIG-I-mediated signaling. Toll-like receptors are located in endosome. TLR3 recognizes viral double-stranded RNA, and TLR7 and 8 recognize single-strand RNA. Virus has the ability to suppress these innate immune response. For example, to inhibit RIG-I-mediated signaling, HCV core protein suppresses the function of DDX3. In addition, HCV NS3-4A protein cleaves IPS-1 to inhibit the signal. Molecular mechanism of how viral RNA is recognized by innate immune system will make great progress on our understanding of how virus escapes from host immune system.  相似文献   

10.
Herpes simplex viruses (HSV-1 and HSV-2) cause global morbidity and synergistically correlate with HIV infection.HSV exists life-long in a latent form in sensory neurons with intermittent reactivation,in despite of host immune surveillance.While abundant evidence for HSV interfering with innate immune responses so as to favor the replication and propagation of the virus,several lines of evidence declare that HSV attenuates adaptive immunity by various mechanisms,including but not limited to the ablation of antigen presentation,induction of apoptosis,and interruption of cellular signaling.In this review,we will focus on the perturbative role of HSV in Tcells signaling.  相似文献   

11.
CRISPR/Cas9基因编辑技术是通过人工设计的单向导RNA(Single-guide RNA,sgRNA)指导Cas9蛋白对目的基因靶位点进行特异性的识别、结合和切割后,通过细胞的非同源末端连接或同源末端重组修复机制来完成对基因组的敲除与敲入的编辑技术。RIG-I是机体的一种模式识别受体,能够识别胞质中的含5′-三磷酸基团的RNA,并通过与下游信号分子MAVS相互作用,激活IRF3/7和NF-κB,从而启动I型干扰素和炎性因子的表达。已有研究表明,B型流感病毒(IBV)在感染早期能够上调RIG-I的表达水平。为了探索RIG-I是否为B型流感病毒激活抗病毒天然免疫信号通路的主要受体及其对IBV复制的影响,本研究利用CRISPR-Cas9技术对293T细胞中的RIG-I基因进行了敲除,经嘌呤霉素压力筛选到了一株稳定敲除RIG-I基因的293T(RIG-I-/-293T)细胞系。Western blotting检测发现,IBV或仙台病毒感染后该细胞系中RIG-I不再表达,说明该敲除细胞系构建成功。IBV感染RIG-I-/-293T细胞后,干扰素、炎性因子及干扰素刺激基因的转录水平与野生型293T细胞相比明显下降,并且在RIG-I-/-293T细胞中检测不到p65和IRF3磷酸化,表明IBV感染早期细胞因子的表达主要依赖于RIG-I信号通路的激活。IBV在野生型及RIG-I-/-293T细胞中的多步生长曲线表明,RIG-I可抑制IBV的复制。以上结果表明,RIG-I敲除的293T细胞系构建成功,RIG-I是IBV激活下游抗病毒天然免疫信号通路的主要受体之一,且对IBV的复制具有负调控作用,该研究为探索IBV的感染机制奠定了基础。  相似文献   

12.
线粒体是真核细胞至关重要的细胞器,参与机体细胞能量代谢和细胞凋亡等多种生物学过程。线粒体还参与机体的天然免疫反应的调节。线粒体不仅可以作为病毒免疫反应的载体,还可以通过产生ROS参与抗菌反应。线粒体受到损伤、刺激后,可释放mtDNA,TFAM,ROS,ATP,心磷脂和甲酰肽等内容物。这些分子可以作为损伤相关模式分子(damage associated molecular patterns, DAMPs)被模式识别受体识别,从而参与宿主的免疫调节。研究表明,线粒体已成为内源性DAMPs的重要来源,在先天性免疫应答以及疾病进展过程中发挥着重要的作用。本文就线粒体来源的损伤相关模式分子在机体免疫调节中的作用进行综述。  相似文献   

13.
Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.  相似文献   

14.
Recognition of virus infections by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation associated gene 5 (MDA5), activates signaling pathways, leading to the induction of inflammatory cytokines that limit viral replication. To determine the effects of PRR-mediated innate immune response on hepatitis B virus (HBV) replication, a 1.3mer HBV genome was cotransfected into HepG2 or Huh7 cells with plasmid expressing TLR adaptors, myeloid differentiation primary response gene 88 (MyD88), and TIR-domain-containing adaptor-inducing beta interferon (TRIF), or RIG-I/MDA5 adaptor, interferon promoter stimulator 1 (IPS-1). The results showed that expressing each of the three adaptors dramatically reduced the levels of HBV mRNA and DNA in both HepG2 and Huh7 cells. However, HBV replication was not significantly affected by treatment of HBV genome-transfected cells with culture media harvested from cells transfected with each of the three adaptors, indicating that the adaptor-induced antiviral response was predominantly mediated by intracellular factors rather than by secreted cytokines. Analyses of involved signaling pathways revealed that activation of NF-κB is required for all three adaptors to elicit antiviral response in both HepG2 and Huh7 cells. However, activation of interferon regulatory factor 3 is only essential for induction of antiviral response by IPS-1 in Huh7 cells, but not in HepG2 cells. Furthermore, our results suggest that besides NF-κB, additional signaling pathway(s) are required for TRIF to induce a maximum antiviral response against HBV. Knowing the molecular mechanisms by which PRR-mediated innate defense responses control HBV infections could potentially lead to the development of novel therapeutics that evoke the host cellular innate antiviral response to control HBV infections.  相似文献   

15.
We have used cDNA arrays to compare the activation of various cellular genes in response to infection with Sendai viruses (SeV) that contain specific mutations. Three groups of cellular genes activated by mutant SeV infection, but not by wild-type SeV, were identified in this way. While some of these genes are well known interferon (IFN)-stimulated genes, others, such as those for interleukin-6 (IL-6) and IL-8, are not directly induced by IFN. The gene for beta IFN (IFN-beta), which is critical for initiating an antiviral response, was also specifically activated in mutant SeV infections. The SeV-induced activation of IFN-beta was found to depend on IFN regulatory factor 3, and the activation of all three cellular genes was independent of IFN signaling. Mutations that disrupt four distinct elements in the SeV genome (the leader RNA, two regions of the C protein, and the V protein) all lead to enhanced levels of IFN-beta mRNA, and at least three of these viral genes also appear to be involved in preventing activation of IL-8. Our results suggest that SeV targets the inflammatory and adaptive immune responses as well as the IFN-induced intracellular antiviral state by using a multifaceted approach.  相似文献   

16.
17.
Herpes virus entry mediator (HVEM) is one of two principal receptors mediating herpes simplex virus (HSV) entry into murine and human cells. It functions naturally as an immune signaling co-receptor, and may participate in enhancing or repressing immune responses depending on the natural ligand used. To investigate whether engagement of HVEM by HSV affects the in vivo response to HSV infection, we generated recombinants of HSV-2(333) that expressed wild-type gD (HSV-2/gD) or mutant gD able to bind to nectin-1 (the other principal entry receptor) but not HVEM. Replication kinetics and yields of the recombinant strains on Vero cells were indistinguishable from those of wild-type HSV-2(333). After intravaginal inoculation with mutant or wild-type virus, adult female C57BL/6 mice developed vaginal lesions and mortality in similar proportions, and mucosal viral titers were similar or lower for mutant strains at different times. Relative to HSV-2/gD, percentages of HSV-specific CD8(+) T-cells were similar or only slightly reduced after infection with the mutant strain HSV-2/gD-Δ7-15, in all tissues up to 9 days after infection. Levels of HSV-specific CD4(+) T-cells five days after infection also did not differ after infection with either strain. Levels of the cytokine IL-6 and of the chemokines CXCL9, CXCL10, and CCL4 were significantly lower in vaginal washes one day after infection with HSV-2/gD compared with HSV-2/gD-Δ7-15. We conclude that the interaction of HSV gD with HVEM may alter early innate events in the murine immune response to infection, without significantly affecting acute mortality, morbidity, or initial T-cell responses after lethal challenge.  相似文献   

18.
Plasmacytoid dendritic cells (pDCs), also known as type I interferon (IFN)-producing cells, are specialized immune cells characterized by their extraordinary capabilities of mounting rapid and massive type I IFN response to nucleic acids derived from virus, bacteria or dead cells. PDCs selectively express endosomal Toll-like receptor (TLR) 7 and TLR9, which sense viral RNA and DNA respectively. Following type I IFN and cytokine responses, pDCs differentiate into antigen presenting cells and acquire the ability to regulate T cell-mediated adaptive immunity. The functions of pDCs have been implicated not only in antiviral innate immunity but also in immune tolerance, inflammation and tumor microenvironments. In this review, we will focus on TLR7/9 signaling and their regulation by pDC-specific receptors.  相似文献   

19.
In the cytosol, the sensing of RNA viruses by the RIG-I-like receptors (RLRs) triggers a complex signaling cascade where the mitochondrial antiviral signaling protein (MAVS) plays a crucial role in orchestrating the innate host response through the induction of antiviral and inflammatory responses. Hence, in addition to their known roles in the metabolic processes and the control of programmed cell death, mitochondria are now emerging as a fundamental hub for innate anti-viral immunity. This review summarizes the findings related to the MAVS adapter and mitochondria in the innate immune response to RNA viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号