首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of N(α)-terminal acetylation on protein stability and protein function in general recently acquired renewed and increasing attention. Although the substrate specificity profile of the conserved enzymes responsible for N(α)-terminal acetylation in yeast has been well documented, the lack of higher eukaryotic models has hampered the specificity profile determination of N(α)-acetyltransferases (NATs) of higher eukaryotes. The fact that several types of protein N termini are acetylated by so far unknown NATs stresses the importance of developing tools for analyzing NAT specificities. Here, we report on a method that implies the use of natural, proteome-derived modified peptide libraries, which, when used in combination with two strong cation exchange separation steps, allows for the delineation of the in vitro specificity profiles of NATs. The human NatA complex, composed of the auxiliary hNaa15p (NATH/hNat1) subunit and the catalytic hNaa10p (hArd1) and hNaa50p (hNat5) subunits, cotranslationally acetylates protein N termini initiating with Ser, Ala, Thr, Val, and Gly following the removal of the initial Met. In our studies, purified hNaa50p preferred Met-Xaa starting N termini (Xaa mainly being a hydrophobic amino acid) in agreement with previous data. Surprisingly, purified hNaa10p preferred acidic N termini, representing a group of in vivo acetylated proteins for which there are currently no NAT(s) identified. The most prominent representatives of the group of acidic N termini are γ- and β-actin. Indeed, by using an independent quantitative assay, hNaa10p strongly acetylated peptides representing the N termini of both γ- and β-actin, and only to a lesser extent, its previously characterized substrate motifs. The immunoprecipitated NatA complex also acetylated the actin N termini efficiently, though displaying a strong shift in specificity toward its known Ser-starting type of substrates. Thus, complex formation of NatA might alter the substrate specificity profile as compared with its isolated catalytic subunits, and, furthermore, NatA or hNaa10p may function as a post-translational actin N(α)-acetyltransferase.  相似文献   

2.
Protein acetylation is a widespread modification that is mediated by site-selective acetyltransferases. KATs (lysine Nϵ-acetyltransferases), modify the side chain of specific lysines on histones and other proteins, a central process in regulating gene expression. Nα-terminal acetylation occurs on the ribosome where the α amino group of nascent polypeptides is acetylated by NATs (N-terminal acetyltransferase). In yeast, three different NAT complexes were identified NatA, NatB, and NatC. NatA is composed of two main subunits, the catalytic subunit Naa10p (Ard1p) and Naa15p (Nat1p). Naa50p (Nat5) is physically associated with NatA. In man, hNaa50p was shown to have acetyltransferase activity and to be important for chromosome segregation. In this study, we used purified recombinant hNaa50p and multiple oligopeptide substrates to identify and characterize an Nα-acetyltransferase activity of hNaa50p. As the preferred substrate this activity acetylates oligopeptides with N termini Met-Leu-Xxx-Pro. Furthermore, hNaa50p autoacetylates lysines 34, 37, and 140 in vitro, modulating hNaa50p substrate specificity. In addition, histone 4 was detected as a hNaa50p KAT substrate in vitro. Our findings thus provide the first experimental evidence of an enzyme having both KAT and NAT activities.  相似文献   

3.
Protein N(α)-terminal acetylation (Nt-acetylation) is considered one of the most common protein modification in eukaryotes, and 80-90% of all soluble human proteins are modified in this way, with functional implications ranging from altered protein function and stability to translocation potency amongst others. Nt-acetylation is catalyzed by N-terminal acetyltransferases (NATs), and in yeast five NAT types are identified and denoted NatA-NatE. Higher eukaryotes additionally express NatF. Except for NatD, human orthologues for all yeast NATs are identified. yNatD is defined as the catalytic unit Naa40p (Nat4) which co-translationally Nt-acetylates histones H2A and H4. In this study we identified and characterized hNaa40p/hNatD, the human orthologue of the yeast Naa40p. An in vitro proteome-derived peptide library Nt-acetylation assay indicated that recombinant hNaa40p acetylates N-termini starting with the consensus sequence Ser-Gly-Gly-Gly-Lys-, strongly resembling the N-termini of the human histones H2A and H4. This was confirmed as recombinant hNaa40p Nt-acetylated the oligopeptides derived from the N-termini of both histones. In contrast, a synthetically Nt-acetylated H4 N-terminal peptide with all lysines being non-acetylated, was not significantly acetylated by hNaa40p, indicating that hNaa40p catalyzed H4 N(α)-acetylation and not H4 lysine N(ε)-acetylation. Also, immunoprecipitated hNaa40p specifically Nt-acetylated H4 in vitro. Heterologous expression of hNaa40p in a yeast naa40-Δ strain restored Nt-acetylation of yeast histone H4, but not H2A in vivo, probably reflecting the fact that the N-terminal sequences of human H2A and H4 are highly similar to each other and to yeast H4 while the N-terminal sequence of yeast H2A differs. Thus, Naa40p seems to have co-evolved with the human H2A sequence. Finally, a partial co-sedimentation with ribosomes indicates that hNaa40p co-translationally acetylates H2A and H4. Combined, our results strongly suggest that human Naa40p/NatD is conserved from yeast. Thus, the NATs of all classes of N-terminally acetylated proteins in humans now appear to be accounted for.  相似文献   

4.
The kinetic reaction mechanism of the type II calmodulin-dependent protein kinase was studied by using its constitutively active kinase domain. Lacking regulatory features, the catalytic domain simplified data collection, analysis, and interpretation. To further facilitate this study, a synthetic peptide was used as the kinase substrate. Initial velocity measurements of the forward reaction were consistent with a sequential mechanism. The patterns of product and dead-end inhibition studies best fit an ordered Bi Bi kinetic mechanism with ATP binding first to the enzyme, followed by binding of the peptide substrate. Initial-rate patterns of the reverse reaction of the kinase suggested a rapid-equilibrium mechanism with obligatory ordered binding of ADP prior to the phosphopeptide substrate; however, this apparent rapid-equilibrium ordered mechanism was contrary to the observed inhibition by the phosphopeptide which is not supposed to bind to the kinase in the absence of ADP. Inspection of product inhibition patterns of the phosphopeptide with both ATP and peptide revealed that an ordered Bi Bi mechanism can show initial-rate patterns of a rapid-equilibrium ordered system when a Michaelis constant for phosphopeptide, Kip, is large relative to the concentration of phosphopeptide used. Thus, the results of this study show an ordered Bi Bi mechanism with nucleotide binding first in both directions of the kinase reaction. All the kinetic constants in the forward and reverse directions and the Keq of the kinase reaction are reported herein. To provide theoretical bases and diagnostic aid for mechanisms that can give rise to typical rapid-equilibrium ordered kinetic patterns, a discussion on various sequential cases is presented in the Appendix.  相似文献   

5.
Nt-acetylation is among the most common protein modifications in eukaryotes. Although thought for a long time to protect proteins from degradation, the role of Nt-acetylation is still debated. It is catalyzed by enzymes called N-terminal acetyltransferases (NATs). In eukaryotes, several NATs, composed of at least one catalytic domain, target different substrates based on their N-terminal sequences. In order to better understand the substrate specificity of human NATs, we investigated in silico the enzyme-substrate interactions in four catalytic subunits of human NATs (Naa10p, Naa20p, Naa30p and Naa50p). To date hNaa50p is the only human subunit for which X-ray structures are available. We used the structure of the ternary hNaa50p/AcCoA/MLG complex and a structural model of hNaa10p as a starting point for multiple molecular dynamics simulations of hNaa50p/AcCoA/substrate (substrate = MLG, EEE, MKG), hNaa10p/AcCoA/substrate (substrate = MLG, EEE). Nine alanine point-mutants of the hNaa50p/AcCoA/MLG complex were also simulated. Homology models of hNaa20p and hNaa30p were built and compared to hNaa50p and hNaa10p. The simulations of hNaa50p/AcCoA/MLG reproduce the interactions revealed by the X-ray data. We observed strong hydrogen bonds between MLG and tyrosines 31, 138 and 139. Yet the tyrosines interacting with the substrate’s backbone suggest that their role in specificity is limited. This is confirmed by the simulations of hNaa50p/AcCoA/EEE and hNaa10p/AcCoA/MLG, where these hydrogen bonds are still observed. Moreover these tyrosines are all conserved in hNaa20p and hNaa30p. Other amino acids tune the specificity of the S1’ sites that is different for hNaa10p (acidic), hNaa20p (hydrophobic/basic), hNaa30p (basic) and hNaa50p (hydrophobic). We also observe dynamic correlation between the ligand binding site and helix that tightens under substrate binding. Finally, by comparing the four structures we propose maps of the peptide-enzyme interactions that should help rationalizing substrate-specificity and lay the ground for inhibitor design.  相似文献   

6.
Abstract: The kinetics of seRotonin N -acetyltransferase (NAT) from the lateral eye of Rana perezi have been characterized. NAT from ocular tissue reached maximal activity at a phosphate buffer concentration of 250 m M and a pH of 6.5. Reaction linearity was highly conserved within the homogenate fraction range tested (0.033-0.33). The time course of ocular NAT reaction showed a high linearity at 25 and 35°C. K m and Vmax estimations for acetyl-CoA at a 10 m M tryptamine concentration were 63.3 μ M and 4.42 nmol/h per eye, respectively. Regardless of the acceptor amine (tryptamine or serotonin), the K m was not affected by the acetyl-CoA concentration (50 or 250 μ M ), whereas the V max was significantly increased at a 250 μ M acetyl-CoA concentration. Ocular NAT showed a higher affinity for serotonin ( K m= 20.7 μ M ) than for tryptamine ( K m= 48-60 μ M ); V max however, was similar for both substrates. Acetyl-CoA does not protect ocular NAT; in contrast, the use of EGTA (4 m M ) in the assay is essential to protect the enzyme because NAT in ocular crude homogenate shows rapid inactivation. This result suggests that intracellular calcium levels are involved in the NAT inactivation mechanisms in frog ocular tissue.  相似文献   

7.
The co-translational modification of N-terminal acetylation is ubiquitous among eukaryotes and has been reported to have a wide range of biological effects. The human N-terminal acetyltransferase (NAT) Naa50p (NAT5/SAN) acetylates the α-amino group of proteins containing an N-terminal methionine residue and is essential for proper sister chromatid cohesion and chromosome condensation. The elevated activity of NATs has also been correlated with cancer, making these enzymes attractive therapeutic targets. We report the x-ray crystal structure of Naa50p bound to a native substrate peptide fragment and CoA. We found that the peptide backbone of the substrate is anchored to the protein through a series of backbone hydrogen bonds with the first methionine residue specified through multiple van der Waals contacts, together creating an α-amino methionine-specific pocket. We also employed structure-based mutagenesis; the results support the importance of the α-amino methionine-specific pocket of Naa50p and are consistent with the proposal that conserved histidine and tyrosine residues play important catalytic roles. Superposition of the ternary Naa50p complex with the peptide-bound Gcn5 histone acetyltransferase revealed that the two enzymes share a Gcn5-related N-acetyltransferase fold but differ in their respective substrate-binding grooves such that Naa50p can accommodate only an α-amino substrate and not a side chain lysine substrate that is acetylated by lysine acetyltransferase enzymes such as Gcn5. The structure of the ternary Naa50p complex also provides the first molecular scaffold for the design of NAT-specific small molecule inhibitors with possible therapeutic applications.  相似文献   

8.
N-terminal acetylation (N-Ac) is a highly abundant eukaryotic protein modification. Proteomics revealed a significant increase in the occurrence of N-Ac from lower to higher eukaryotes, but evidence explaining the underlying molecular mechanism(s) is currently lacking. We first analysed protein N-termini and their acetylation degrees, suggesting that evolution of substrates is not a major cause for the evolutionary shift in N-Ac. Further, we investigated the presence of putative N-terminal acetyltransferases (NATs) in higher eukaryotes. The purified recombinant human and Drosophila homologues of a novel NAT candidate was subjected to in vitro peptide library acetylation assays. This provided evidence for its NAT activity targeting Met-Lys- and other Met-starting protein N-termini, and the enzyme was termed Naa60p and its activity NatF. Its in vivo activity was investigated by ectopically expressing human Naa60p in yeast followed by N-terminal COFRADIC analyses. hNaa60p acetylated distinct Met-starting yeast protein N-termini and increased general acetylation levels, thereby altering yeast in vivo acetylation patterns towards those of higher eukaryotes. Further, its activity in human cells was verified by overexpression and knockdown of hNAA60 followed by N-terminal COFRADIC. NatF's cellular impact was demonstrated in Drosophila cells where NAA60 knockdown induced chromosomal segregation defects. In summary, our study revealed a novel major protein modifier contributing to the evolution of N-Ac, redundancy among NATs, and an essential regulator of normal chromosome segregation. With the characterization of NatF, the co-translational N-Ac machinery appears complete since all the major substrate groups in eukaryotes are accounted for.  相似文献   

9.
The impact of Nα-terminal acetylation on protein stability and protein function in general recently acquired renewed and increasing attention. Although the substrate specificity profile of the conserved enzymes responsible for Nα-terminal acetylation in yeast has been well documented, the lack of higher eukaryotic models has hampered the specificity profile determination of Nα-acetyltransferases (NATs) of higher eukaryotes. The fact that several types of protein N termini are acetylated by so far unknown NATs stresses the importance of developing tools for analyzing NAT specificities. Here, we report on a method that implies the use of natural, proteome-derived modified peptide libraries, which, when used in combination with two strong cation exchange separation steps, allows for the delineation of the in vitro specificity profiles of NATs. The human NatA complex, composed of the auxiliary hNaa15p (NATH/hNat1) subunit and the catalytic hNaa10p (hArd1) and hNaa50p (hNat5) subunits, cotranslationally acetylates protein N termini initiating with Ser, Ala, Thr, Val, and Gly following the removal of the initial Met. In our studies, purified hNaa50p preferred Met-Xaa starting N termini (Xaa mainly being a hydrophobic amino acid) in agreement with previous data. Surprisingly, purified hNaa10p preferred acidic N termini, representing a group of in vivo acetylated proteins for which there are currently no NAT(s) identified. The most prominent representatives of the group of acidic N termini are γ- and β-actin. Indeed, by using an independent quantitative assay, hNaa10p strongly acetylated peptides representing the N termini of both γ- and β-actin, and only to a lesser extent, its previously characterized substrate motifs. The immunoprecipitated NatA complex also acetylated the actin N termini efficiently, though displaying a strong shift in specificity toward its known Ser-starting type of substrates. Thus, complex formation of NatA might alter the substrate specificity profile as compared with its isolated catalytic subunits, and, furthermore, NatA or hNaa10p may function as a post-translational actin Nα-acetyltransferase.The multisubunit and ribosome-associated protein Nα-acetyltransferases (NATs)1 are omnipresent enzyme complexes that catalyze the transfer of the acetyl moiety from acetyl-CoA to the primary α-amines of N termini of nascent proteins (13). As up to 50 to 60% of yeast proteins and 80 to 90% of human proteins are modified in this manner, Nα-acetylation is a widespread protein modification in eukaryotes (47), and the pattern of modification has remained largely conserved throughout evolution (4, 8). NATs belong to a subfamily of the Gcn5-related N-acetyltransferase superfamily of N-acetyltransferases, additionally encompassing the well-studied histone acetyltransferases that are implicated in epigenetic imprinting.In yeast and humans, three main NAT complexes, NatA, NatB, and NatC were found to be responsible for the majority of Nα-terminal acetylations (1). The NatA complex, responsible for cotranslational Nα-terminal acetylation of proteins with Ser, Ala, Thr, Gly, and Val N termini, is composed of two main subunits, the catalytic subunit Naa10p (previously known as Ard1p) and the auxiliary subunit Naa15p (previously known as Nat1p/NATH) (911). Furthermore, a third catalytic subunit Naa50p (previously known as Nat5)—an acetyltransferase shown to function in chromosome cohesion and segregation (1214)—was found to physically interact with the NatA complex of yeast (2), fruit fly (12), and human (15). Recently, human Naa50p (hNaa50p) was reported to display lysine or Nε-acetyltransferase as well as NAT activity (16), the latter was defined as NatE activity (16). Interestingly, the chaperone-like, Huntingtin interacting protein HYPK, identified as a novel stable interactor of human NatA, was functionally implicated in the N-terminal acetylation of an in vivo NatA substrate, demonstrating that NAT complex formation and composition may have an overall influence on the observed (degree of) Nα-acetylation (17). Further, subunits of the human NatA complex have been coupled to cancer-related processes and differentiation, with altered subunit expression reported in papillary thyroid carcinoma, neuroblastoma, and retinoic acid induced differentiation. Furthermore, the NatA catalytic subunit was found to be implicated in processes such as hypoxia-response and the β-catenin pathway (18, 19). Of note is that in line with the differential localization patterns of the individual NatA subunits (9, 13, 20, 21), other data indicate that these subunits might well exert NatA-independent enzymatic functions (13, 22, 23). Given that a significant fraction of hNaa10p and hNaa15p are nonribosomal (9), and given the multitude of postulated post-translational in vivo N-acetylation events recently reported (2426), these observations argue in favor of the existence of NAT complexes and/or catalytic NAT-subunits acting post-translationally.Similar to NatA, the NatB and NatC complexes, composed of the catalytic subunit Naa20p or Naa30p and the auxiliary subunits Naa25p or Naa35p and Naa38p respectively, are conserved from yeast to higher eukaryotes concerning their subunit composition as well as their substrate specificity. Both these complexes display activity toward methionine-starting N termini, with NatB preferring acidic residues as well as Asn and Gln at P2′-sites2, whereas NatC prefers hydrophobic amino acid residues at substrate P2′-sites (1, 27, 28).Nα-acetylation affects various protein functions such as localization, activity, association, and stability (29, 30). Only recently a more generalized function of protein Nα-acetylation in generating so-called N-terminal degrons marking proteins for removal was put forward (31). The lack of mouse models in addition to the fact that (combined) knockdown of individual components of Nα-acetyltransferases only marginally affect the overall Nα-acetylation status (4) have so far hampered the molecular characterization of the substrate specificity profile of (yet uncharacterized) NATs. To date, all eukaryote Nα-acetylation events are assumed to be catalyzed by the five known NATs (32). However, an additional level of complexity is imposed by the fact that in contrast to yeast, higher eukaryotes express multiple splice variants of various NAT subunits as well as paralogs thereof (33, 34), further implicating that a specific NAT''s substrate specificity might be altered in this way, in addition to the possible existence of substrate redundancy. Moreover, regulation of substrate specificity and stability of NAT activity can be imposed by differential complex formation and post-translational modifications including phosphorylation, auto-acetylation, and specific proteolytic cleavage of the catalytic subunits (9, 16, 17). As such, a detailed understanding of the substrate specificity of NATs, and the regulation thereof, could help unravel the physiological substrate repertoires as well as the associated physiological roles of NATs in the normal and the disease state.The specificity of Nα-acetyltransferases and their endogenous substrates were originally studied by two-dimensional-PAGE: Nα-acetylation neutralizes the N-terminal positive charge, resulting in an altered electrophoretic protein migration during isoelectric focusing (3538). Recently, this altered biophysical property was also exploited to enrich for protein N-termini using low pH strong cation exchange (SCX) chromatography (24, 39). As an example, SCX prefractionation combined with N-terminal combined fractional diagonal chromatography, a targeted proteomics technology negatively selecting for protein N-terminal peptides, stable isotope labeling of amino acids in cell culture, and amino-directed modifiers (40), was used to study the in vivo substrate repertoires of human as well as yeast NatA (4).Nevertheless, the various methods reported today to study in detail Nα-terminal acetylation and thus the specificities of different NATs make use of a limited and therefore somewhat biased set of synthesized peptide substrates and comprise the rather laborious detection of radioactive acetylated products as well as enzyme-coupled methods quantifying acetyl-CoA conversion. Because (proteome-derived) peptide libraries have been used extensively to study epitope mapping (41), protein-protein interactions (42), protein modifications such as phosphorylation (43), and proteolysis (44, 45), as well as for determining the substrate specificity of the Nα-deblocking peptide deformylase (46), we reckoned that the development of an oligopeptide-based acetylation assay should allow for more comprehensive screening of NAT-like activities. We here report on the development of a peptide-based method to systematically screen for the in vitro sequence specificity profile of individual NATs as well as endogenous NAT complexes. In summary, SCX enriched, Nα-free peptide libraries, derived from natural proteomes build up the peptide substrate pool. And, upon incubation, NAT Nα-acetylated peptides are enriched by a second SCX fractionation step, resulting in a positive selection of NAT-specific peptide substrates. By use of this proteome-derived peptide library approach, we here delineated (differences in) the specificity profiles of hNaa50p and hNaa10p as isolated hNatA components, as well as of assayed their combined activity when in their native hNatA complex.  相似文献   

10.
The substrate specificity and kinetic mechanism of spermidine N1-acetyltransferase from rat liver was investigated using a highly purified (18 000-fold) preparation from the livers of rats in which the enzyme was induced by treatment with carbon tetrachloride (1.5 ml/kg body wt. 6h before death). The enzyme catalysed the acetylation of spermidine, spermine, sym-norspermidine, sym-norspermine, N-(3-aminopropyl)-cadaverine, N1-acetylspermine, 3,3'-diamino-N-methyldipropylamine and 1,3-diaminopropane, but was inactive with putrescine, cadaverine, sym-homospermidine and N1-acetylspermidine. These results suggest that the enzyme is highly specific for the acetylation of a primary amino group that is separated by a three-carbon aliphatic chain from another nitrogen atom (i.e. the substrates are of the type H2N[CH2]3NHR). The maximal rates of acetylation of 1,3-diaminopropane and 3,3'-diamino-N-methyldipropylamine were much lower than the maximal rates with spermidine or sym-norspermidine as substrates, suggesting a preference for a secondary amino group bearing the aminopropyl group that is acetylated. The best substrates for acetylation were sym-norspermidine and sym-norspermine, which had Km values of about 10 micrograms and Vmax. values of about 2 mumol of product/min per mg of enzyme compared with Km of 130 microM and Vmax. of 1.3 mumol/min per mg for spermidine. N1-Acetylspermidine (the product of the reaction) and N8-acetylspermidine were weak inhibitors and were competitive with spermidine, having Ki values of about 6.6 mM and 0.4 mM respectively. N1-Acetylspermidine was a non-competitive inhibitor with respect to acetyl-CoA. CoA was also inhibitory to the reaction, showing non-competitive kinetics when either [acetyl-CoA] or [spermidine] was varied. These results suggest that the reaction occurs via an ordered Bi Bi mechanism in which spermidine binds first and N1-acetyl-spermidine is the final product to be released.  相似文献   

11.
We have identified two families with a previously undescribed lethal X-linked disorder of infancy; the disorder comprises a distinct combination of an aged appearance, craniofacial anomalies, hypotonia, global developmental delays, cryptorchidism, and cardiac arrhythmias. Using X chromosome exon sequencing and a recently developed probabilistic algorithm aimed at discovering disease-causing variants, we identified in one family a c.109T>C (p.Ser37Pro) variant in NAA10, a gene encoding the catalytic subunit of the major human N-terminal acetyltransferase (NAT). A parallel effort on a second unrelated family converged on the same variant. The absence of this variant in controls, the amino acid conservation of this region of the protein, the predicted disruptive change, and the co-occurrence in two unrelated families with the same rare disorder suggest that this is the pathogenic mutation. We confirmed this by demonstrating a significantly impaired biochemical activity of the mutant hNaa10p, and from this we conclude that a reduction in acetylation by hNaa10p causes this disease. Here we provide evidence of a human genetic disorder resulting from direct impairment of N-terminal acetylation, one of the most common protein modifications in humans.  相似文献   

12.
13.
14.
p300/CBP-associated factor (PCAF) is a histone acetyltransferase that plays an important role in the remodeling of chromatin and the regulation of gene expression. It has been shown to catalyze preferentially acetylation of the epsilon-amino group of lysine 14 in histone H3. In this study, the kinetic mechanism of PCAF was evaluated with a 20-amino acid peptide substrate derived from the amino terminus of histone H3 (H3-20) and recombinant bacterially expressed PCAF catalytic domain (PCAF(cat)). The enzymologic behavior of full-length PCAF and PCAF(cat) were shown to be similar. PCAF-catalyzed acetylation of the substrate H3-20 was shown to be specific for Lys-14, analogous to its behavior with the full-length histone H3 protein. Two-substrate kinetic analysis displayed an intersecting line pattern, consistent with a ternary complex mechanism for PCAF. The dead-end inhibitor analog desulfo-CoA was competitive versus acetyl-CoA and noncompetitive versus H3-20. The dead-end analog inhibitor H3-20 K14A was competitive versus H3-20 and uncompetitive versus acetyl-CoA. The potent bisubstrate analog inhibitor H3-CoA-20 was competitive versus acetyl-CoA and noncompetitive versus H3-20. Taken together, these inhibition patterns support an ordered BiBi kinetic mechanism for PCAF in which acetyl-CoA binding precedes H3-20 binding. Viscosity experiments suggest that diffusional release of product is not rate-determining for PCAF catalysis. These results provide a mechanistic framework for understanding the detailed catalytic behavior of an important subset of the histone acetyltransferases and have significant implications for molecular regulation of and inhibitor design for these enzymes.  相似文献   

15.
Simple and sensitive spectrophotometric and radiochemical procedures are described for the assay of acetyl-CoA:arylamine N-acetyltransferase (NAT; EC 2.3.1.5), which catalyzes the reaction acetyl-CoA + arylamine----N-acetylated arylamine + CoASH. The methods are applicable to crude tissue homogenates and blood lysates. The spectrophotometric assay is characterized by two features: (i) NAT activity is measured by quantifying the disappearance of the arylamine substrate as reflected by decreasing Schiff's base formation with dimethylaminobenzaldehyde. (ii) During the enzymatic reaction, the inhibitory product CoASH is recycled by the system acetyl phosphate/phosphotransacetylase to the substrate acetyl-CoA. The radiochemical procedure depends on enzymatic synthesis of [3H]acetyl-CoA in the assay using [3H]acetate, ATP, CoASH, and acetyl-CoA synthetase. NAT activity is measured by quantifying N-[3H]acetylarylamine after separation from [3H]acetate by extraction. Product inhibition by CoASH is prevented in this system by the use of acetyl-CoA synthetase.  相似文献   

16.
17.
MARCKS (Myristoylated Alanine-Rich C Kinase substrate) is a natively unfolded protein that interacts with actin, Ca2 +–Calmodulin, and some plasma membrane lipids. Such interactions occur at a highly conserved region that is specifically phosphorylated by PKC: the Effector Domain. There are two other conserved domains, MH1 (including a myristoylation site) and MH2, also located in the amino terminal region and whose structure and putative protein binding capabilities are currently unknown. MH2 sequence contains a serine that we described as being phosphorylated only in differentiating neurons (S25 in chick). Here, Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopy were used to characterize the phosphorylated and unphosphorylated forms of a peptide with the MARCKS sequence surrounding S25. The peptide phosphorylated at this residue is recognized by monoclonal antibody 3C3 (mAb 3C3). CD and NMR data indicated that S25 phosphorylation does not cause extensive modifications in the peptide structure. However, the sharper lines, the absence of multiple spin systems and relaxation dispersion data observed for the phosphorylated peptide suggested a more ordered structure. Surface Plasmon Resonance was employed to compare the binding properties of mAb 3C3 to MARCKS protein and peptide. SPR showed that mAb 3C3 binds to the whole protein and the peptide with a similar affinity, albeit different kinetics. The slightly ordered structure of the phosphorylated peptide might be at the origin of its ability to interact with mAb 3C3 antibody, but this binding did not noticeably modify the peptide structure.  相似文献   

18.
Arylamine N-acetyltransferases (NATs) detoxify arylamines and hydrazine xenobiotics by catalyzing their N-acetylation, which prevents their bioactivation. Here, we reveal how structural dynamics impact NAT protein function. Our data suggest that there are multiple conformations in the catalytic cavity of hamster NAT2 that exchange on the millisecond time scale and enable NATs to accommodate substrates of varying size. The regions spanning N177-L180 and D285-F288, which form unique structures in mammalian NATs, possess inherent motions on the nanosecond time scale. The latter segment becomes more restricted in its motions upon substrate binding according to our NMR XNOE data. This greater rigidity appears to stem from interactions with the substrate. Finally, NAT acetylation has been suggested to protect these enzymes from ubiquitination. Our NMR data on a catalytically active state of hamster NAT2 suggest that structural rearrangements caused by its acetylation might contribute to this protection.  相似文献   

19.
Conformational plasticity of the lipid transfer protein SCP2   总被引:1,自引:0,他引:1  
Filipp FV  Sattler M 《Biochemistry》2007,46(27):7980-7991
The nonspecific lipid transfer protein sterol carrier protein 2 (SCP2) is involved in organellar fatty acid metabolism. A hydrophobic cavity in the structure of SCP2 accommodates a wide variety of apolar ligands such as cholesterol derivatives or fatty acyl-coenzyme A (CoA) conjugates. The properties of this nonspecific lipid binding pocket are explored using NMR chemical shift perturbations, paramagnetic relaxation enhancement, amide hydrogen exchange, and 15N relaxation measurements. A common binding cavity shared by different physiological ligands is identified. NMR relaxation measurements reveal that residues in the three C-terminal alpha-helices within the lipid binding region exhibit mobility at fast (picosecond to nanosecond) and slow (microsecond to millisecond) time scales. Ligand binding is associated with a considerable loss of peptide backbone mobility. The observed conformational dynamics in SCP2 may play a role for the access of hydrophobic ligands to an occluded binding pocket. The C-terminal peroxisomal targeting signal of SCP2 is specifically recognized by the Pex5p receptor protein, which conducts cargo proteins toward the peroxisomal organelle. Neither the C-terminal targeting signal nor the N-terminal precursor sequence interferes with lipid binding by SCP2. The alpha-helices involved in lipid binding also mediate a secondary interaction interface with the Pex5p receptor. Silencing of conformational dynamics of the peptide backbone in these helices upon either lipid or Pex5p binding might communicate the loading state of the cargo protein to the targeting receptor.  相似文献   

20.
N(alpha) acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required NatA acetylation for its role in telomeric silencing. NatA functioned genetically through the ORC binding site of the HMR-E silencer. Furthermore, tethering Orc1p directly to the silencer circumvented the requirement for NatA in silencing. Orc1p was N(alpha) acetylated in vivo by NatA. Mutations that abrogated its ability to be acetylated caused strong telomeric derepression. Thus, N(alpha) acetylation of Orc1p represents a protein modification that modulates chromatin function in S. cerevisiae. Genetic evidence further supported a functional link between NatA and ORC: (i) nat1Delta was synthetically lethal with orc2-1 and (ii) the synthetic lethality between nat1Delta and SUM1-1 required the Orc1 N terminus. We also found Sir3p to be acetylated by NatA. In summary, we propose a model by which N(alpha) acetylation is required for the binding of silencing factors to the N terminus of Orc1p and Sir3p to recruit heterochromatic factors and establish repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号