首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Climate change is likely to disrupt the timing of developmental events (phenology) in insect populations in which development time is largely determined by temperature. Shifting phenology puts insects at risk of being exposed to seasonal weather extremes during sensitive life stages and losing synchrony with biotic resources. Additionally, warming may result in loss of developmental synchronization within a population making it difficult to find mates or mount mass attacks against well-defended resources at low population densities. It is unknown whether genetic evolution of development time can occur rapidly enough to moderate these effects. We present a novel approach to modeling the evolution of phenology by allowing the parameters of a phenology model to evolve in response to selection on emergence time and density. We use the Laplace method to find asymptotic approximations for the temporal variation in mean phenotype and phenotypic variance arising in the evolution model that are used to characterize invariant distributions of the model under periodic temperatures at leading order. At these steady distributions the mean phenotype allows for parents and offspring to be oviposited at the same time of year in consecutive years. Numerical simulations show that populations evolve to these steady distributions under periodic temperatures. We consider an example of how the evolution model predicts populations will evolve in response to warming temperatures and shifting resource phenology.  相似文献   

3.
气候变暖对昆虫影响研究进展   总被引:15,自引:0,他引:15  
陈瑜  马春森 《生态学报》2010,30(8):2159-2172
"全球气候变化"已成为国内外最受关注的环境问题。气候变化中以温度升高为特征的气候变暖对变温动物昆虫自身及其所在的生物群落产生直接或间接影响。从研究内容与研究方法2个方面综述了气候变暖对昆虫影响研究的国内外进展。气候变暖导致昆虫发生期提前,地理分布向更高纬度和海拔地区扩散,低温适生种种群密度下降,高温适生种种群密度增加。气候变暖改变寄主植物—害虫—天敌的物候同步性和昆虫原有种间互作关系,影响植食性昆虫的寄主植物范围和取食为害程度。长期的气候变暖带来的强烈的选择性压力引起某些昆虫种群的基因组发生变异。以日均温升高、日最高气温升高和昼夜温差变化等为主要特征气候变暖对昆虫发育、繁殖及存活等生态学指标产生重要影响。研究方法上主要是利用野外直接观察法、回归预测模型、有效积温模型、CLIMEX和GIS等生态风险评估软件、生物化石比较技术、人工气候下生态试验、检测标记基因频率变化等方法来研究气候变暖对昆虫的影响。最后简要评述了已有研究的不足并指出未来的研究方向:(1)气候变暖情景下开展昆虫种间互作研究并拓展研究对象;(2)高温下昆虫适应性研究;(3)建立完善人工模拟气候下的实验方法;(4)构建昆虫有效生态机理模型。  相似文献   

4.
Two values of thermal requirements, the lower developmental threshold (LDT), that is, the temperature at which development ceases, and the sum of effective temperatures, that is, day degrees above the LDT control the development of ectotherms and are used in phenology models to predict time at which the development of individual stages of a species will be completed. To assist in the rapid development of phenology models, we merged a previously published database of thermal requirements for insects, gathered by online search in CAB Abstracts, with independently collected data for insects and mites from original studies. The merged database comprises developmental times at various constant temperatures on 1,054 insect and mite species, many of them in several populations, mostly pests and their natural enemies, from all over the world. We show that closely related species share similar thermal requirements and therefore, for a species with unknown thermal requirements, the value of LDT and sum of effective temperatures of its most related species from the database can be used.  相似文献   

5.
1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life‐history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, whereas phenology can shape population performance and community interactions. 2. It was experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies [Pachydiplax longipennis (Burmeister)]. Larvae were reared under three environmental temperatures: ambient, +2.5, and +5 °C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally‐occurring variation. 3. Clear effects of temperature were found in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non‐significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life‐history stages is critical to interpreting the consequences of warming for organismal performance.  相似文献   

6.
昆虫种群动态模拟模型   总被引:12,自引:0,他引:12  
句荣辉  沈佐锐 《生态学报》2005,25(10):2709-2716
昆虫是动物界中最大的类群,与人类有着密切的利害关系。对昆虫的数量预测与符合经济和生态规律的管理,一直都被国内外列入重点研究课题。种群动态模拟是害虫管理中重要的基础工作。近十年来,关于昆虫种群动态模型的理论和实验研究进展迅速。现分别从单种种群和多种种群两个方面对国内外近些年来昆虫种群动态模拟模型的研究进展进行了概括和总结。单种种群从两个方面阐述:一是最基本的种群动态模拟模型Log istic方程的研究成果,包括方程的修正、参数的拟合与最优捕获策略等;另一个方面是对种群动态模拟常用的矩阵模型的概述,主要介绍不等期年龄组、矩阵维数的变化、矩阵维数与历期的关系、个体之间的发育差异以及发育速率差异等等对昆虫种群动态模型的影响。多种群主要从建模和模型应用两个部分对国内外研究成果进行综述。最后,对种群动态模拟模型研究的发展方向做了深入地讨论,即在原有的数据采集工作的基础上,使用面向对象程序设计语言,把各种要素包括各种物种及各种环境条件抽象成类,用消息传递来表示昆虫种群内个体与个体、昆虫种群与环境之间的相互作用,再结合先进的数学算法,建立一个直观的、操作简单的昆虫种群动态模型库,使模型结构与现实世界有最大的相似性。这样就可以实现昆虫种群动态的可视化、立体化、实时化和精确化的监测及预测。  相似文献   

7.
董兆克  戈峰 《昆虫知识》2011,48(5):1141-1148
全世界地表平均温度在上个世纪增加了0.74℃,并且在未来还会持续增加。在过去的20年,气候变暖对生物系统的影响吸引了大量的研究。本文综述了由温度升高为主要驱动因子的气候变化对昆虫适合度的影响,主要从昆虫越冬存活率、化性(世代数)、扩散迁移、发生分布、物候关系5个方面阐述气候变暖对昆虫发生发展的作用,认为未来应长期进行昆虫种群动态监测预警,更关注气候变暖下植物-害虫-天敌互作关系的研究。  相似文献   

8.
昆虫翅型分化的表型可塑性机制   总被引:1,自引:0,他引:1  
王小艺  杨忠岐  魏可  唐艳龙 《生态学报》2015,35(12):3988-3999
翅多型现象在昆虫中广泛存在,是昆虫在飞行扩散和繁殖能力之间权衡的一种策略,对种群的环境适应性进化具有重要的意义。目前在植食性昆虫中研究较多,有关寄生蜂的翅型分化鲜见报道。综述了昆虫翅型分化的表型可塑性机制。遗传因素和环境因素均对昆虫翅的发育产生影响,基因型对翅型的决定具有显著作用,外界环境条件,包括温度、光周期、食物质量、自身密度、外源激素等因素对昆虫翅的发育也产生重要的调节作用,从而产生翅的非遗传多型性现象。此外,天敌的寄生或捕食作用可能会诱导某些昆虫的翅型产生隔代表型变化。对昆虫产生翅多型现象的生态学意义及其在生物进化过程中的作用进行了讨论,并探讨了寄生性昆虫翅型分化机制在生物防治上的可能应用途径。功能基因组学和表观遗传学的进一步发展可望为彻底揭示昆虫翅型分化机制提供新的机遇和技术手段。  相似文献   

9.
物候是昆虫的重要生物学性状之一。物候模型预测昆虫发育事件的时间,在种群动态、物种分布和进化动态等科学研究以及农林业生产中具有重要作用。本文回顾了常见的物候模型及在昆虫学研究上的应用,包括热性能曲线、生物物理模型、基于概率的模型、分布时滞模型、发育进度曲线、物候匹配模型和物候变迁模型。  相似文献   

10.
Phenology, the timing of developmental events such as oviposition or pupation, is highly dependent on temperature; since insects are ectotherms, the time it takes them to complete a life stage (development time) depends on the temperatures they experience. This dependence varies within and between populations due to variation among individuals that is fixed within a life stage (giving rise to what we call persistent variation) and variation from random effects within a life stage (giving rise to what we call random variation). It is important to understand how both types of variation affect phenology if we are to predict the effects of climate change on insect populations.  相似文献   

11.
张鹤  林进添 《环境昆虫学报》2015,37(6):1280-1286
过去的100年全球地表平均温度显著上升,全球气候变暖对生物的影响引起世界范围内的广泛关注。和其他生物一样,昆虫也受到了气候变暖的影响,如繁殖发育速度增快、遗传变异、种群多样性降低、分布区扩大、种群爆发、外来入侵、种群灭绝等等。全球变暖引起的昆虫响应对农林业以及人类健康存在潜在风险,因此本文主要从物候、分布区、生长发育及繁殖、形态、行为与生理、分子水平这些方面综述全球气候变暖背景下昆虫如何响应,并讨论了目前研究动态和未来的研究方向,意在为气候变化条件下昆虫科学管理策略(如种群监控、模型预测、风险评估、遗传多样性、抗性遗传等)提供指导意义。  相似文献   

12.
The study of insect responses to temperature has a long tradition in science, starting from Réaumur's work on caterpillars in the 18th century. In 1932, Ernst Janisch wrote: ‘The problem is (and will be more and more in the future) one of the most important ones in entomology […]’. Almost 90 years after this paper, its prediction still holds true, with a sustained interest of the scientific community for the study of insect responses to temperature, especially in the context of climate change. We present a review of the major developments in the field of insect development responses to temperature and analyze the growing importance of modeling approaches in the literature using a bibliographic analysis. We discuss recent advances and future directions for phenology‐modeling based on temperature‐dependent development rate. Finally, we highlight the need for a change of paradigm toward a system‐based approach in order to overcome current challenges and to predict insect phenology more accurately, with direct implications in agriculture, conservation biology, and epidemiology.  相似文献   

13.
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.  相似文献   

14.
物候模型研究进展   总被引:12,自引:0,他引:12  
近年来随着全球气候变暖,物候提前,物候学的研究越来越受到人们的关注.通过建立物候模型使物候期的预知成为可能,从而为生产实践活动提供依据和指导.本文探讨了物候模型研究的意义,总结了影响植物和昆虫物候的温度、水分、光和养分等主要环境因子的作用.根据国内外物候模型的研究现状,重点介绍了作物、树木、植被和昆虫4类物候模型的研究内容和进展.作物物候模型注重生理生态过程;树木物候模型以统计方法为主,但近期也有尝试将激素水平作为物候的决定因素;植被物候模型以遥感技术的应用为发展趋势;昆虫物候模型则进一步对发育起点的确定和对温度因子的修正,GIS的引入将昆虫物候模型的应用范围扩大.最后指出了目前物候模型研究中存在的问题.  相似文献   

15.
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual‐based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual‐based phenology models. We demonstrate our approach using a temperature‐dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large‐scale simulations, such as studies of altered pest distributions under climate change.  相似文献   

16.
Climate change (first of all the rise in temperature) is currently considered one of the most serious global challenges facing mankind. Here we review the diversity of insect responses to the current climate warming, with particular focus on true bugs (Heteroptera). Insects as ectotherms are bound to respond to the temperature change, and different species respond differently depending on their specific physiological and ecological traits, seasonal cycle, trophic relations, etc. Insect responses to climate warming can be divided into six categories: changes in (1) ranges, (2) abundance, (3) phenology, (4) voltinism, (5) morphology, physiology, and behavior, and (6) relationships with other species and in the structure of communities. Changes in ranges and phenology are easier to notice and record than other responses. Range shifts have been reported more often in Lepidoptera and Odonata than in other insect orders. We briefly outline the history and eco-physiological background of the recent range limit changes in the Southern green stink bug Nezara viridula (Heteroptera, Pentatomidae) in central Japan. Range expansion in individual species can lead to enrichment of local faunas, especially at high latitudes. Phenological changes include not only advances in development in spring but also shifts in phenology later in the season. The phenophases related to the end of activity usually shift to later dates, thus prolonging the period of active development. This may have both positive and negative consequences for the species and populations. As with any other response, the tendencies in phenological changes may vary among species and climatic zones. The proven cases of change in voltinism are rare, but such examples do exist. Application of models based on thermal parameters of development suggests that a rise in temperature by 2°C will result in an increased number of annual generations in many species from different arthropod taxa (up to three or four additional generations in Thysanoptera, Aphidoidea, and Acarina). The warming-mediated changes in physiology, morphology, or behavior are difficult to detect and prove, first of all because of the absence of reliable comparative data. Nevertheless, there are examples of changes in photoperiodic responses of diapause induction and behavioral responses related to search of shelters for summer diapause (aestivation). Since (1) individual species do not exist in isolation and (2) the direction and magnitude of responses even to the same environmental changes vary between species, it may be expected that in many cases the current stable relationships between species will be affected. Thus, unequal range shifts in insects and their host plants may disrupt their trophic interactions near the species?? range boundaries. Studies of responses to climate warming in more than one interrelated species or in entire communities are extremely rare. The loss of synchronism in seasonal development of community members may indicate inability of the higher trophic levels to adapt fully to climate warming or an attempt of the lower trophic level to escape from the pressure of the higher trophic levels. It is generally supposed that many insect species in the Temperate Climate Zone will benefit in some way from the current climate warming. However, there is some experimental evidence of an opposite or at least much more complex response; the influence of warming might be deleterious for some species or populations. It is suggested that species or populations from the cold or temperate climate have sufficient phenotypic plasticity to survive under the conditions of climate warming, whereas species and populations which already suffer from stress under extreme seasonal temperatures in warmer regions may have a limited ??maneuver space?? since the current temperatures are close to their upper thermal limits. Without genetic changes, even moderate warming will put these species or populations under serious physiological stress. The accumulated data suggest that responses of insects and the entire biota to climate warming will be complex and will vary depending on the rate of warming and ecological peculiarities of species and regions. Physiological responses will vary in their nature, direction, and magnitude even within one species or population, and especially between seasons. The responses will also differ in different seasons. For example, warming may negatively affect nymphal development during the hot season but at the same time accelerate growth and development during the cold season and/or ensure milder and more favorable overwintering conditions for adults. All these factors will affect population dynamics of particular species and relationships among the members of ecosystems. We should keep in mind that (1) not only selected insect species but almost all the species will be affected, (2) temperature is not the only component of the climatic system that is changing, and (3) responses will be different in different seasons. Host plants, phytophagous insects, their competitors, symbionts, predators, parasites, and pathogens will not only respond separately to climate changes; individual responses will further affect the responses of other species, thus making reliable prediction extremely complicated. Responses are expected to (1) be species- or population-specific, (2) concern basically all the aspects of organism/ species biology and ecology (individual physiology, population structure, abundance, local adaptations, phenology, voltinism, and distribution), and (3) occur at scales ranging from an undetectable cellular level to major distribution range shifts or regional extinctions. The scale of insect responses will depend on the extent and rate of climate warming. Slight to moderate warming may cause responses only in a limited number of species with more flexible life cycles, whereas a substantial increase in temperature may affect a greater number of different species and ecological groups.  相似文献   

17.
In all organisms, phenotypic variability is an evolutionary stipulation. Because the development of poikilothermic organisms depends directly on the temperature of their habitat, environmental variability is also an integral factor in models of their phenology. In this paper we present two existing phenology models, the distributed delay model and the Sharpe and DeMichele model, and develop an alternate approach, called the Extended von Foerster model, based on the age-structured McKendrick-von Foerster partial differential model. We compare the models theoretically by examining the biological assumptions made in the basic derivation of each approach. In particular, we focus on each model’s ability to incorporate variability among individuals as well as variability in the environment. When compared against constant temperaturemountain pine beetle (Dendroctonus ponderosae Hopkins) laboratory developmental data, the Extended von Foerster model exhibits the highest correlation between theory and observation.  相似文献   

18.
The strength and direction of phenological responses to changes in climate have been shown to vary significantly both among species and among populations of a species, with the overall patterns not fully resolved. Here, we studied the temporal and spatial variability associated with the response of several insect species to recent global warming. We use hierarchical models within a model comparison framework to analyze phenological data gathered over 40 years by the Japan Meteorological Agency on the emergence dates of 14 insect species at sites across Japan. Contrary to what has been predicted with global warming, temporal trends of annual emergence showed a later emergence day for some species and sites over time, even though temperatures are warming. However, when emergence data were analyzed as a function of temperature and precipitation, the overall response pointed out an earlier emergence day with warmer conditions. The apparent contradiction between the response to temperature and trends over time indicates that other factors, such as declining populations, may be affecting the date phenological events are being recorded. Overall, the responses by insects were weaker than those found for plants in previous work over the same time period in these ecosystems, suggesting the potential for ecological mismatches with deleterious effects for both suites of species. And although temperature may be the major driver of species phenology, we should be cautious when analyzing phenological datasets as many other factors may also be contributing to the variability in phenology.  相似文献   

19.
This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects of CO2 or UVB. Direct impacts of precipitation have been largely neglected in current research on climate change. Temperature directly affects development, survival, range and abundance. Species with a large geographical range will tend to be less affected. The main effect of temperature in temperate regions is to influence winter survival; at more northerly latitudes, higher temperatures extend the summer season, increasing the available thermal budget for growth and reproduction. Photoperiod is the dominant cue for the seasonal synchrony of temperate insects, but their thermal requirements may differ at different times of year. Interactions between photoperiod and temperature determine phenology; the two factors do not necessarily operate in tandem. Insect herbivores show a number of distinct life‐history strategies to exploit plants with different growth forms and strategies, which will be differentially affected by climate warming. There are still many challenges facing biologists in predicting and monitoring the impacts of climate change. Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.  相似文献   

20.

Background  

Many insects undergo a period of arrested development, called diapause, to avoid seasonally recurring adverse conditions. Whilst the phenology and endocrinology of insect diapause have been well studied, there has been comparatively little research into the developmental details of diapause. We investigated developmental aspects of diapause in sexually-produced embryos of the pea aphid, Acyrthosiphon pisum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号