首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanism of Na(+)-dependent transport of L-carnitine via the carnitine/organic cation transporter OCTN2 and the subcellular localization of OCTN2 in kidney were studied. Using plasma membrane vesicles prepared from HEK293 cells that were stably transfected with human OCTN2, transport of L-carnitine via human OCTN2 was characterized. Uptake of L-[(3)H]carnitine by the OCTN2-expressing membrane vesicles was significantly increased in the presence of an inwardly directed Na(+) gradient, with an overshoot, while such transient uphill transport was not observed in membrane vesicles from cells that were mock transfected with expression vector pcDNA3 alone. The uptake of L-[(3)H]carnitine was specifically dependent on Na(+) and the osmolarity effect showed that Na(+) significantly influenced the transport rather than the binding. Changes of inorganic anions in the extravesicular medium and of membrane potential by valinomycin altered the initial uptake activity of L-carnitine by OCTN2. In addition, the fluxes of L-carnitine and Na(+) were coupled with 1:1 stoichiometry. Accordingly, it was clarified that Na(+) is coupled with flux of L-carnitine and the flux is an electrogenic process. Furthermore, OCTN2 was localized on the apical membrane of renal tubular epithelial cells. These results clarified that OCTN2 is important for the concentrative reabsorption of L-carnitine after glomerular filtration in the kidney.  相似文献   

3.
l-Carnitine is derived both from dietary sources and biosynthesis. Dietary carnitine is absorbed in the small intestine and then distributed to other organs. Previous studies using Caco-2 cells demonstrated that the transport of l-carnitine in the intestine involves a carrier-mediated system. The purpose of this study was to determine whether the uptake of l-carnitine in Caco-2 cells is mediated by the recently identified organic cation/carnitine transporter (OCTN2). Kinetics of l-[(3)H]carnitine uptake were investigated with or without specific inhibitors. l-Carnitine uptake in mature cells was sodium dependent and linear with time. K(m) and V(max) values for saturable uptake were 14.07 +/- 1.70 micro M and 26.3 +/- 0.80 pmol. mg protein(-1). 6 min(-1), respectively. l-carnitine uptake was inhibited (P < 0.05-0.01) by valproate and other organic cations. Anti-OCTN2 antibodies recognized a protein in the brush-border membrane (BBM) of Caco-2 cells with an apparent molecular mass of 60 kDa. The OCTN2 expression was confirmed by double immunostaining. Our results demonstrate that l-carnitine uptake in differentiated Caco-2 cells is primarily mediated by OCTN2, located on the BBM.  相似文献   

4.
We used muscle contraction, which increases fatty acid oxidation, as a model to determine whether fatty acid transport is acutely regulated by fatty acid translocase (FAT/CD36). Palmitate uptake by giant vesicles, obtained from skeletal muscle, was increased by muscle contraction. Kinetic studies indicated that muscle contraction increased V(max), but K(m) remained unaltered. Sulfo-N-succinimidyl oleate, a specific inhibitor of FAT/CD36, fully blocked the contraction-induced increase in palmitate uptake. In giant vesicles from contracting muscles, plasma membrane FAT/CD36 was also increased in parallel with the increase in long chain fatty acid uptake. Further studies showed that like GLUT-4, FAT/CD36 is located in both the plasma membrane and intracellularly (endosomally). With muscle contraction, FAT/CD36 at the surface of the muscle was increased, while concomitantly, FAT/CD36 in the intracellular pool was reduced. Similar responses were observed for GLUT-4. We conclude that fatty acid uptake is subject to short term regulation by muscle contraction and involves the translocation of FAT/CD36 from intracellular stores to the sarcolemma, analogous to the regulation of glucose uptake by GLUT-4.  相似文献   

5.
We investigated the interaction of acetylcholinesterase (AChE) inhibitors with acetyl-L-carnitine (ALCAR) transporter at the blood-brain barrier (BBB). ALCAR uptake by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB cells), as an in vitro model of BBB, were characterized by cellular uptake study using [(3)H]ALCAR. In vivo brain uptake of [(3)H]ALCAR was determined by brain uptake index after carotid artery injection in rats. In results, the transport properties for [(3)H]ALCAR by TR-BBB cell were consistent with those of ALCAR transport by the organic cation/carnitine transporter 2 (OCTN2). Also, OCTN2 was confirmed to be expressed in the cells. The uptake of [(3)H]ALCAR by TR-BBB cells was inhibited by AChE inhibitors such as donepezil, tacrine, galantamine and rivastigmine, which IC(50) values are 45.3, 74.0, 459 and 800 μM, respectively. Especially, donepezil and galantamine inhibited the uptake of [(3)H]ALCAR competitively, but tacrine and rivastigmine inhibited noncompetitively. Furthermore, [(3)H]ALCAR uptake by the rat brain was found to be significantly decreased by quinidine, donepezil and galantamine. Our results suggest that transport of AChE inhibitors such as donepezil and galantamine through the BBB is at least partly mediated by OCTN2 which is involved in transport of ALCAR.  相似文献   

6.
Carnitine is a zwitterion essential for the beta-oxidation of fatty acids. We report novel localization of the organic cation/carnitine transporter, OCTN1, to mitochondria. We made GFP- and RFP-human OCTN1 cDNA constructs and showed expression of hOCTN1 in several transfected mammalian cell lines. Immunostaining of GFP-hOCTN1 transfected cells with different intracellular markers and confocal fluorescent microscopy demonstrated mitochondrial expression of OCTN1. There was striking co-localization of an RFP-hOCTN1 fusion protein and a mitochondrial-GFP marker construct in transfected MEF-3T3 and no co-localization of GFP-hOCTN1 in transfected human skin fibroblasts with other intracellular markers. L-[(3)H]Carnitine uptake in freshly isolated mitochondria of GFP-hOCTN1 transfected HepG2 demonstrated a K(m) of 422 microM and Western blot with an anti-GFP antibody identified the expected GFP-hOCTN1 fusion protein (90 kDa). We showed endogenous expression of native OCTN1 in HepG2 mitochondria with anti-GST-hOCTN1 antibody. Further, we definitively confirmed intact L-[(3)H]carnitine uptake (K(m) 1324 microM), solely attributable to OCTN1, in isolated mitochondria of mutant human skin fibroblasts having <1% of carnitine acylcarnitine translocase activity (alternate mitochondrial carnitine transporter). This mitochondrial localization was confirmed by TEM of murine heart incubated with highly specific rabbit anti-GST-hOCTN1 antibody and immunogold labeled goat anti-rabbit antibody. This suggests an important yet different role for OCTN1 from other OCTN family members in intracellular carnitine homeostasis.  相似文献   

7.
Glucose uptake across the plasma membrane in animal cells plays a crucial role in whole-body glucose homeostasis. Insulin-stimulated glucose transport activity in vivo in several tissues was estimated using the 2-deoxy-D-[1-(3)H]glucose ([(3)H]2DG) uptake determination method. A tracer dose of [(3)H]2DG was injected intravenously into 8-day-old chicks (Gallus gallus) administered simultaneously or previously with porcine insulin (40 microg/kg BW). After 10 or 20 min, several major tissues, including skeletal and cardiac muscle, were sampled and their 2-deoxy-D-[1-(3)H]glucose 6-phosphate content analyzed. Plasma glucose concentration and [(3)H]2DG radioactivity were lowered by insulin within 20 min of [(3)H]2DG administration, while the plasma [(3)H]2DG/glucose ratio was not significantly different between chicks injected with insulin and their control counterparts. A marked uptake of 2DG was observed in cardiac tissue and brain, followed by kidney and skeletal muscles. In skeletal muscles, insulin increased the 2DG uptake in soleus, extensor digitorum longus and pectoralis superficialis muscles. On the other hand, no significant increases in insulin-induced 2DG uptake were detected in cardiac muscle or adipose tissue compared to controls. The results show that glucose transport across the plasma membrane in vivo in most skeletal muscles tested, but not cardiac muscle, was increased by insulin administration to chicks. These findings suggest that an insulin-responsive glucose transport mechanism is present in chickens, even though they intrinsically lack GLUT4 homologous gene, the insulin-responsive glucose transporter in mammals.  相似文献   

8.
1. The metabolism of [U-(14)C]glucose in perfused resting and contracting diaphragm muscle from normal rats and rats made diabetic with streptozotocin was studied in the presence and absence of insulin. 2. The incorporation of [U-(14)C]-glucose into glycogen and oligosaccharides was stimulated by insulin under all experimental conditions studied. 3. In the normal perfused resting diaphragm muscle the incorporation of radioactivity from [(14)C]glucose into lactate and CO(2) was not affected by insulin. 4. Periodic contractions, induced by electrical stimulation of the perfused diaphragm muscle in the absence of insulin, caused an increased incorporation of (14)C into glycogen and hexose phosphate esters, whereas incorporation of (14)C into lactate was greatly decreased. Production of (14)CO(2) in the contracting muscle was not significantly different from that in resting muscle. Addition of insulin to the perfusion liquid caused a further increase in formation of [(14)C]-glycogen in contracting muscle to values reached in the resting muscle in the presence of insulin. Formation of [(14)C]lactate was also stimulated by insulin, to values close to those found in the resting muscle in the presence of insulin. 5. In the diabetic resting muscle the rate of glucose metabolism was very low in the absence of insulin. Insulin increased formation of [(14)C]glycogen to the value found in normal muscle in the absence of insulin. Production of (14)CO(2) and formation of [(14)C]hexose phosphate remained unchanged. 6. In the diabetic contracting muscle production of (14)CO(2) was increased to values approaching those found in normal contracting muscle. Formation of [(14)C]lactate and [(14)C]glycogen was also increased by contraction, to normal values. Only traces of [(14)C]hexose phosphate were detectable. Addition of insulin to the perfusion medium stimulated formation of [(14)C]glycogen, to values found in normal contracting muscle. Production of [(14)C]hexose phosphate was stimulated by insulin, to approximately the values found in the normal contracting muscle. Production of (14)CO(2) and [(14)C]lactate, however, was not significantly affected by insulin. 7. These results indicate that the defects of glucose metabolism observed in perfused resting diabetic diaphragm muscle can be partially corrected by contraction, and in the presence of insulin the contracting diabetic muscle has a completely normal pattern of glycogen synthesis and lactate production, but CO(2) production remains impaired.  相似文献   

9.
Transport of L-[3H]carnitine and acetyl-L-[3H]carnitine at the blood-brain barrier (BBB) was examined by using in vivo and in vitro models. In vivo brain uptake of acetyl-L-[3H]carnitine, determined by a rat brain perfusion technique, was decreased in the presence of unlabeled acetyl-L-carnitine and in the absence of sodium ions. Similar transport properties for L-[3H]carnitine and/or acetyl-L-[3H]carnitine were observed in primary cultured brain capillary endothelial cells (BCECs) of rat, mouse, human, porcine and bovine, and immortalized rat BCECs, RBEC1. Uptakes of L-[3H]carnitine and acetyl-L-[3H]carnitine by RBEC1 were sodium ion-dependent, saturable with K(m) values of 33.1 +/- 11.4 microM and 31.3 +/- 11.6 microM, respectively, and inhibited by carnitine analogs. These transport properties are consistent with those of carnitine transport by OCTN2. OCTN2 was confirmed to be expressed in rat and human BCECs by an RT-PCR method. Furthermore, the uptake of acetyl-L-[3H]carnitine by the BCECs of juvenile visceral steatosis (jvs) mouse, in which OCTN2 is functionally defective owing to a genetical missense mutation of one amino acid residue, was reduced. The brain distributions of L-[3H]carnitine and acetyl-L-[3H]carnitine in jvs mice were slightly lower than those of wild-type mice at 4 h after intravenous administration. These results suggest that OCTN2 is involved in transport of L-carnitine and acetyl-L-carnitine from the circulating blood to the brain across the BBB.  相似文献   

10.
Immunological assays and transport measurements in apical membrane vesicles revealed that the apical membrane of rat kidney cortex and medulla presents OCTN2 and OCTN3 proteins and transports L ‐[3H]‐carnitine in a Na+‐dependent and ‐independent manner. OCTN2 mediates the Na+/L ‐carnitine transport activity measured in medulla because (i) the transport showed the same characteristics as the cortical Na+/L ‐carnitine transporter and (ii) the medulla expressed OCTN2 mRNA and protein. The Na+‐independent L ‐carnitine transport activity appears to be mediated by both OCTN2 and OCTN3 since: (i) Na+‐independent L ‐carnitine uptake was inhibited by both, anti‐OCTN2 and anti‐OCTN3 antibodies, (ii) kinetics studies revealed the involvement of a high‐ and a low‐affinity transport systems, and (iii) Western and immunohistochemistry studies revealed that OCTN3 protein is located at the apical membrane of the kidney epithelia. The Na+‐independent L ‐carnitine uptake exhibited trans‐stimulation by intravesicular L ‐carnitine or betaine. This trans‐stimulation was inhibited by anti‐OCTN3 antibody, but not by anti‐OCTN2 antibody, indicating that OCTN3 can function as an L ‐carnitine/organic compound exchanger. This is the first report showing a functional apical OCTN2 in the renal medulla and a functional apical OCTN3 in both renal cortex and medulla. J. Cell. Physiol. 223: 451–459, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
A novel organic cation transporter OCTN2 is indispensable for carnitine transport across plasma membrane and subsequent fatty acid metabolism in the mitochondria. Here, we report a novel splice variant of OCTN2 (OCTN2VT), in which a 72-base-pair sequence located in the first intron of OCTN2 gene was spliced between exons 1 and 2 of OCTN2, causing the insertion of 24 amino acids in the first extracellular loop of OCTN2. Despite the similarity between OCTN2 and OCTN2VT regarding primary structure and tissue distribution, their biochemical characteristics were significantly different. OCTN2 was expressed on the plasma membrane with robust N-glycosylation, whereas OCTN2VT was retained in the endoplasmic reticulum (ER) with poor N-glycosylation. In addition, the retention in the ER caused no carnitine uptake into the cells. These results demonstrate that the biochemical and functional characteristics of OCTN2VT are distinct from OCTN2 due to the insertion of 24 amino acids in the first extracellular loop.  相似文献   

12.
We investigated the importance of the two catalytic alpha-isoforms of the 5'-AMP-activated protein kinase (AMPK) in 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) and contraction-induced glucose uptake in skeletal muscle. Incubated soleus and EDL muscle from whole-body alpha2- or alpha1-AMPK knockout (KO) and wild type (WT) mice were incubated with 2.0 mm AICAR or electrically stimulated to contraction. Both AICAR and contraction increased 2DG uptake in WT muscles. KO of alpha2, but not alpha1, abolished AICAR-induced glucose uptake, whereas neither KO affected contraction-induced glucose uptake. AICAR and contraction increased alpha2- and alpha1-AMPK activity in wild type (WT) muscles. During AICAR stimulation, the remaining AMPK activity in KO muscles increased to the same level as in WT. During contraction, the remaining AMPK activity in alpha2-KO muscles was elevated by 100% probably explained by a 2-3-fold increase in alpha1-protein. In alpha1-KO muscles, alpha2-AMPK activity increased to similar levels as in WT. Both interventions increased total AMPK activity, as expressed by AMPK-P and ACCbeta-P, in WT muscles. During AICAR stimulation, this was dramatically reduced in alpha2-KO but not in alpha1-KO, whereas during contraction, both measurements were essentially similar to WT in both KO-muscles. The results show that alpha2-AMPK is the main donor of basal and AICAR-stimulated AMPK activity and is responsible for AICAR-induced glucose uptake. In contrast, during contraction, the two alpha-isoforms seem to substitute for each other in terms of activity, which may explain the normal glucose uptake despite the lack of either alpha2- or alpha1-AMPK. Alternatively, neither alpha-isoform of AMPK is involved in contraction-induced muscle glucose uptake.  相似文献   

13.
pET-21a(+)-mOCTN3-6His was constructed and used for over-expression in Escherichia coli Rosetta(DE3)pLysS. After IPTG induction a protein with apparent molecular mass of 53 kDa was collected in the insoluble fraction of the cell lysate and purified by Ni(2+)-chelating chromatography with a yield of 2mg/l of cell culture. The over-expressed protein was identified with mOCTN3 by anti-His antibody and reconstitution in liposomes. mOCTN3 required peculiar conditions for optimal expression and reconstitution in liposomes. The protein catalyzed a time dependent [(3)H]carnitine uptake which was stimulated by intraliposomal ATP and nearly independent of the pH. The K(m) for carnitine was 36 μM. [(3)H]carnitine transport was inhibited by carnitine analogues and some Cys and NH(2) reagents. This paper represents the first outcome in over-expressing, in active form, the third member of the OCTN sub-family, mOCTN3, in E. coli.  相似文献   

14.
Individuals with the plasmalemmal high-affinity carnitine transporter defect present with progressive infantile-onset carnitine-responsive cardiomyopathy, lipid storage myopathy, recurrent hypoglycemic hypoketotic encephalopathy, and failure to thrive. The carnitine uptake defect (CUD) has been documented in their cultured skin fibroblasts, lymphoblasts, and/or myoblasts. The cDNA encoding the high-affinity sodium-dependent human carnitine transporter OCTN2 has recently been cloned. We used the green fluorescent protein (GFP) as a living marker for positively transfected cells in our expression studies of the high-affinity carnitine transporter OCTN2 cDNA in cell lines with the CUD. Transfection of cell lines from 12 unrelated patients (nine fibroblast and three lymphoblastoid) with a GFP construct harboring the wild-type full-length OCTN2 cDNA was done using LipoTAXI. Transient and stable expression of the recombinant GFP-human carnitine transporter OCTN2 cDNA was surveyed, and transient transfection of the fibroblast and stable transfection of the lymphoblastoid cell lines were achieved. There was functional restoration of carnitine uptake in the transfected mutant cell lines, thereby confirming the identity of the transfected cDNA. In addition, we report the first demonstration of the subcellular localization of an in-frame fusion GFP-human high-affinity carnitine transporter OCTN2 protein in the plasma membrane by confocal laser-scanning fluorescence microscopy.  相似文献   

15.
We characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na(+)-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na(+)-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine. The BBM transporter in kidney had a high affinity for carnitine: apparent K(m)=18.7 microM; V(max)=7.85 pmol/mg protein/s. In kidney BLM, similar characteristics were obtained: apparent K(m)=11.5 microM and V(max)=3.76 pmol/mg protein/s. The carnitine uptake by both membranes was not affected within the physiological pH 6.5-8.5. Tetraethylammonium, verapamil, valproate and pyrilamine significantly inhibited the carnitine uptake by BBM but not by BLM. By Western blot analysis, the OCTN2 (a Na(+)-dependent high-affinity carnitine transporter) was localized in the kidney BBM, and not in BLM. Strong OCTN2 expression was observed in kidney and skeletal muscle, with no expression in intestine in accordance with our functional study. We conclude that different polarized carnitine transporters exist in kidney BBM and BLM. L-Carnitine uptake by mouse renal BBM vesicles involves a carrier-mediated system that is Na(+)-dependent and is inhibited significantly by specific drugs. The BBM transporter is likely to be OCTN2 as indicated by a strong reactivity with the anti-OCTN2 polyclonal antibody.  相似文献   

16.
In the brain β-oxidation, which takes place in astrocytes, is not a major process of energy supply. Astrocytes synthesize important lipid metabolites, mainly due to the processes taking place in peroxisomes. One of the compounds necessary in the process of mitochondrial β-oxidation and export of acyl moieties from peroxisomes is l-carnitine. Two Na-dependent plasma membrane carnitine transporters were shown previously to be present in astrocytes: a low affinity amino acid transporter B0,+ and a high affinity cation/carnitine transporter OCTN2. The expression of OCTN2 is known to increase in peripheral tissues upon the stimulation of peroxisome proliferators-activator receptor α (PPARα), a nuclear receptor known to up-regulate several enzymes involved in fatty acid metabolism. The present study was focused on another high affinity carnitine transporter—OCTN3, its presence, regulation and activity in astrocytes. Experiments using the techniques of real-time PCR, Western blot and immunocytochemistry analysis demonstrated the expression of octn3 in rat astrocytes and, out of two rat sequences ascribed as similar to mouse OCTN3, XM_001073573 was found in these cells. PPARα activator–2-[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY-14,643) stimulated by 50% expression of octn3, while, on the contrary to peripheral tissues, it did not change the expression of octn2. This observation was correlated with an increased Na-independent activity of carnitine transport. Analysis by transmission electron microscopy showed an augmented intracellular localization of OCTN3 upon PPARα stimulation, mainly in peroxisomes, indicating a physiological role of OCTN3 as peroxisomal membrane transporter. These observations point to an important role of OCTN3 in peroxisomal fatty acid metabolism in astrocytes.  相似文献   

17.
To evaluate the effects of endurance training in rats on fatty acid metabolism, we measured the uptake and oxidation of palmitate in isolated rat hindquarters as well as the content of fatty acid-binding proteins in the plasma membranes (FABP(PM)) of red and white muscles from 16 trained (T) and 18 untrained (UT) rats. Hindquarters were perfused with 6 mM glucose, 1,800 microM palmitate, and [1-(14)C]palmitate at rest and during electrical stimulation (ES) for 25 min. FABP(PM) content was 43-226% higher in red than in white muscles and was increased by 55% in red muscles after training. A positive correlation was found to exist between succinate dehydrogenase activity and FABP(PM) content in muscle. Palmitate uptake increased by 64-73% from rest to ES in both T and UT and was 48-57% higher in T than UT both at rest (39.8 +/- 3.5 vs. 26.9 +/- 4. 4 nmol. min(-1). g(-1), T and UT, respectively) and during ES (69.0 +/- 6.1 vs. 43.9 +/- 4.4 nmol. min(-1). g(-1), T and UT, respectively). While the rats were resting, palmitate oxidation was not affected by training; palmitate oxidation during ES was higher in T than UT rats (14.8 +/- 1.3 vs. 9.3 +/- 1.9 nmol. min(-1). g(-1), T and UT, respectively). In conclusion, endurance training increases 1) plasma free fatty acid (FFA) uptake in resting and contracting perfused muscle, 2) plasma FFA oxidation in contracting perfused muscle, and 3) FABP(PM) content in red muscles. These results suggest that an increased number of these putative plasma membrane fatty acid transporters may be available in the trained muscle and may be implicated in the regulation of plasma FFA metabolism in skeletal muscle.  相似文献   

18.
We examined, in muscle of lean and obese Zucker rats, basal, insulin-induced, and contraction-induced fatty acid transporter translocation and fatty acid uptake, esterification, and oxidation. In lean rats, insulin and contraction induced the translocation of the fatty acid transporter FAT/CD36 (43 and 41%, respectively) and plasma membrane-associated fatty acid binding protein (FABPpm; 19 and 60%) and increased fatty acid uptake (63 and 40%, respectively). Insulin and contraction increased lean muscle palmitate esterification and oxidation 72 and 61%, respectively. In obese rat muscle, basal levels of sarcolemmal FAT/CD36 (+33%) and FABPpm (+14%) and fatty acid uptake (+30%) and esterification (+32%) were increased, whereas fatty acid oxidation was reduced (-28%). Insulin stimulation of obese rat muscle increased plasmalemmal FABPpm (+15%) but not plasmalemmal FAT/CD36, blunted fatty acid uptake and esterification, and failed to reduce fatty acid oxidation. In contracting obese rat muscle, the increases in fatty acid uptake and esterification and FABPpm translocation were normal, but FAT/CD36 translocation was impaired and fatty acid oxidation was blunted. There was no relationship between plasmalemmal fatty acid transporters and palmitate partitioning. In conclusion, fatty acid metabolism is impaired at several levels in muscles of obese Zucker rats; specifically, they are 1) insulin resistant with respect to FAT/CD36 translocation and fatty acid uptake, esterification, and oxidation and 2) contraction resistant with respect to fatty acid oxidation and FAT/CD36 translocation, but, conversely, 3) obese muscles are neither insulin nor contraction resistant at the level of FABPpm. Finally, 4) there is no evidence that plasmalemmal fatty acid transporters contribute to the channeling of fatty acids to specific metabolic destinations within the muscle.  相似文献   

19.
Phenylarsine oxide (PAO) has a number of targets in the neurons, one of them is exocytotic process. In this study, we have focused on the mechanisms of phenylarsine oxide action on Ca(2+)-dependent and Ca(2+)-independent neurotransmitter release from rat brain synaptosomes. We investigated the influence of phenylarsine oxide on: (i) l-[(14)C]glutamate and [(3)H]GABA release and uptake; (ii) plasma membrane potential using a potential-sensitive fluorescent probe rhodamine 6G; (iii) exo/endocytotic process using a pH-sensitive fluorescent probe acridine orange (AO). It has been found that phenylarsine oxide induced deacidification of synaptic vesicles. This effect was completely abolished by preliminary treatment of synaptosomes with a protonophore FCCP indicating that both reagents injured a proton electrochemical gradient. Dissipation of the proton gradient by low concentrations of phenylarsine oxide (not exceed 1 microM) did not prevent KCl-triggered exocytotic response, but essentially modified endocytotic one. At higher concentrations of phenylarsine oxide (up to 10 microM), the proton gradient dissipation was intensified and the exocytotic response was fully abolished. The reagent did not change plasma membrane potential, but depolarized mitochondria. It also caused potent inhibition of the Ca(2+)-stimulated l-[(14)C]glutamate and [(3)H]GABA release and increase the Ca(2+)-independent release of l-[(14)C]glutamate, but not of [(3)H]GABA. Disulfide-reducing reagents (dithiothreitol and beta-mercaptoethanol) completely prevented phenylarsine oxide-evoked injuries. They could also restore the initial levels of the mitochondrial potential, the exocytotic response to KCl and the release and uptake of neurotransmitters. Our data provide the evidence that phenylarsine oxide causes dissipation of synaptic vesicle acidic pool resulting in the reduction of vesicle filling and as consequence in attenuation of Ca(2+)-stimulated neurotransmitter release.  相似文献   

20.
Primary carnitine deficiency is caused by impaired activity of the Na+-dependent OCTN2 carnitine/organic cation transporter. Carnitine is essential for entry of long-chain fatty acids into mitochondria and its deficiency impairs fatty acid oxidation. Most missense mutations identified in patients with primary carnitine deficiency affect putative transmembrane or intracellular domains of the transporter. Exceptions are the substitutions P46S and R83L located in an extracellular loop close to putative glycosylation sites (N57, N64, and N91) of OCTN2. P46S and R83L impaired glycosylation and maturation of OCTN2 transporters to the plasma membrane. We tested whether glycosylation was essential for the maturation of OCTN2 transporters to the plasma membrane. Substitution of each of the three asparagine (N) glycosylation sites with glutamine (Q) decreased carnitine transport. Substitution of two sites at a time caused a further decline in carnitine transport that was fully abolished when all three glycosylation sites were substituted by glutamine (N57Q/N64Q/N91Q). Kinetic analysis of carnitine and sodium-stimulated carnitine transport indicated that all substitutions decreased the Vmax for carnitine transport, but N64Q/N91Q also significantly increased the Km toward carnitine, indicating that these two substitutions affected regions of the transporter important for substrate recognition. Western blot analysis confirmed increased mobility of OCTN2 transporters with progressive substitutions of asparagines 57, 64 and/or 91 with glutamine. Confocal microscopy indicated that glutamine substitutions caused progressive retention of OCTN2 transporters in the cytoplasm, up to full retention (such as that observed with R83L) when all three glycosylation sites were substituted. Tunicamycin prevented OCTN2 glycosylation, but it did not impair maturation to the plasma membrane. These results indicate that OCTN2 is physiologically glycosylated and that the P46S and R83L substitutions impair this process. Glycosylation does not affect maturation of OCTN2 transporters to the plasma membrane, but the 3 asparagines that are normally glycosylated are located in a region important for substrate recognition and turnover rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号