首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MHC class I and class II are crucial for the adaptive immune system. Although regulation of MHC class II expression by CIITA has long been recognized, the mechanism of MHC class I transactivation has been largely unknown until the recent discovery of NLRC5/class I transactivator. In this study, we show using Nlrc5-deficient mice that NLRC5 is required for both constitutive and inducible MHC class I expression. Loss of Nlrc5 resulted in severe reduction in the expression of MHC class I and related genes such as β(2)-microglobulin, Tap1, or Lmp2, but did not affect MHC class II levels. IFN-γ stimulation could not overcome the impaired MHC class I expression in Nlrc5-deficient cells. Upon infection with Listeria monocyogenes, Nlrc5-deficient mice displayed impaired CD8(+) T cell activation, accompanied with increased bacterial loads. These findings illustrate critical roles of NLRC5/class I transactivator in MHC class I gene regulation and host defense by CD8(+) T cell responses.  相似文献   

4.
5.
The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specifi c and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.  相似文献   

6.
NOD-like receptors (NLRs) are a family of intracellular proteins that play critical roles in innate immunity against microbial infection. NLRC5, the largest member of the NLR family, has recently attracted much attention. However, in vitro studies have reported inconsistent results about the roles of NLRC5 in host defense and in regulating immune signaling pathways. The in vivo function of NLRC5 remains unknown. Here, we report that NLRC5 is a critical regulator of host defense against intracellular pathogens in vivo. NLRC5 was specifically required for the expression of genes involved in MHC class I antigen presentation. NLRC5-deficient mice showed a profound defect in the expression of MHC class I genes and a concomitant failure to activate L. monocytogenes-specific CD8+ T cell responses, including activation, proliferation and cytotoxicity, and the mutant mice were more susceptible to the pathogen infection. NLRP3-mediated inflammasome activation was also partially impaired in NLRC5-deficient mice. However, NLRC5 was dispensable for pathogen-induced expression of NF-κB-dependent pro-inflammatory genes as well as type I interferon genes. Thus, NLRC5 critically regulates MHC class I antigen presentation to control intracellular pathogen infection.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
The major histocompatibility complex (MHC) region in fish has been subjected to piecemeal analysis centering on the in-depth characterization of single genes. The emphasis has been on those genes proven to be involved in the immune response such as the class I and class II antigen presenting genes and the complement genes. The Fugu genome data presents the opportunity to examine the short-range linkage of potentially all the human MHC orthologues and examine conserved synteny with the human and, to a more limited extent, zebrafish genomes. Analysis confirms the existence of a limited MHC locus in Fugu comprising the MHC class Ia genes and associated class II region genes involved in class I antigen presentation. Identification of additional human MHC orthologues indicates the completely dispersed nature of this region in fish, with a maximum of six MHC genes maintained within close proximity in any one contig. The majority of the other genes are present in the genome data as either singletons or pairs. Comparison with zebrafish substantiates previously observed linkages between class III region orthologues and hints at an ancient conserved class III region.  相似文献   

15.
16.
Controlled localization of class II MHC molecules is essential for proper class II MHC-restricted antigen presentation and the subsequent initiation of an adaptive immune response. Ubiquitination of class II MHC molecules on cytosolic lysine (K225) of the β-chain has been shown to affect localization of the complex. We generated mice in which the endogenous β-chain locus is replaced with a GFP tagged mutant version that lacks the cytosolic lysine residue (I-A-β-K225R-EGFP). These mice have elevated levels of class II MHC as compared to I-A-β-EGFP mice, and immature bone marrow-derived dendritic cells show redistribution of class II MHC to the cell surface. Nonetheless, in these same cells efficiency of antigen presentation is unaffected in I-A-β-K225R-EGFP mice, as assayed for presentation of ovalbumin to appropriately specific T cells. The I-A-β-K225R-EGFP animals have normal CD4 T cell populations and are capable of generating antigen-specific antibody in response to model antigens and viral infection. We therefore conclude that in our experimental system modulation of trafficking by ubiquitination of residue K225 of the β-chain is not essential for the function of class II MHC products in antigen presentation or antibody production.  相似文献   

17.
18.
It is intriguing that several genes with associated functions, including all of class I and class II genes, as well as some genes affecting antigen presentation of both class I and class II pathways, are linked in the MHC. Recent observations have led to speculation that there may be a functional explanation for keeping these related genes together.  相似文献   

19.
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号