首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic characteristics, leaf ionic content, and net fluxes of Na(+), K(+), and Cl(-) were studied in barley (Hordeum vulgare L) plants grown hydroponically at various Na/Ca ratios. Five weeks of moderate (50 mM) or high (100 mM) NaCl stress caused a significant decline in chlorophyll content, chlorophyll fluorescence characteristics, and stomatal conductance (g(s)) in plant leaves grown at low calcium level. Supplemental Ca(2+) enabled normal photochemical efficiency of PSII (F(v)/F(m) around 0.83), restored chlorophyll content to 80-90% of control, but had a much smaller (50% of control) effect on g(s). In experiments on excised leaves, not only Ca(2+), but also other divalent cations (in particular, Ba(2+) and Mg(2+)), significantly ameliorated the otherwise toxic effect of NaCl on leaf photochemistry, thus attributing potential targets for such amelioration to leaf tissues. To study the underlying ionic mechanisms of this process, the MIFE technique was used to measure the kinetics of net Na(+), K(+), and Cl(-) fluxes from salinized barley leaf mesophyll in response to physiological concentrations of Ca(2+), Ba(2+), Mg(2+), and Zn(2+). Addition of 20 mM Na(+) as NaCl or Na(2)SO(4) to the bath caused significant uptake of Na(+) and efflux of K(+). These effects were reversed by adding 1 mM divalent cations to the bath solution, with the relative efficiency Ba(2+)>Zn(2+)=Ca(2+)>Mg(2+). Effect of divalent cations on Na(+) efflux was transient, while their application caused a prolonged shift towards K(+) uptake. This suggests that, in addition to their known ability to block non-selective cation channels (NSCC) responsible for Na(+) entry, divalent cations also control the activity or gating properties of K(+) transporters at the mesophyll cell plasma membrane, thereby assisting in maintaining the high K/Na ratio required for optimal leaf photosynthesis.  相似文献   

2.
The role of the gastrointestinal tract in maintaining ionic homeostasis during digestion, as well as the relative contribution of the diet for providing electrolytes, has been generally overlooked in many aquatic species. An experimental diet that contained an inert reference marker (lead-glass beads) was used to quantify the net transport of Na(+), K(+), and Cl(-) during the digestion and absorption of a single meal (3% ration) by freshwater rainbow trout (Oncorhynchus mykiss). Secretion of Cl(-) into the stomach peaked at 8 and 12 h following feeding at a rate of 1.1 mmol.kg(-1).h(-1), corresponding to a theoretical pH of 0.6 in the secreted fluid (i.e., 240 mmol/l HCl). The majority ( approximately 90%) of dietary Na(+) and K(+) was absorbed in the stomach, whereas subsequent large fluxes of Na(+) and Cl(-) into the anterior intestine corresponded to a large flux of water previously observed. The estimated concentration of Na(+) in fluids secreted into the anterior intestine was approximately 155 mmol/l, equivalent to reported hepatic bile values, whereas the estimated concentration of Cl(-) ( approximately 285 mmol/l) suggested seepage of HCl acid from the stomach in advance of the chyme front. Net absorption of K(+) in the stomach occurred following the cessation of Cl(-) secretion, providing indirect evidence of K(+) involvement with HCl acid production. Overall, 80-90% of the K(+) and Cl(-) contents of the meal were absorbed on a net basis, whereas net Na(+) absorption was negligible. Chyme-to-plasma ion concentration gradients were often opposed to the direction of ion transport, especially for Na(+) and Cl(-).  相似文献   

3.
The mechanism of mediator secretion from mast cells in disease is likely to include modulation of ion channel activity. Several distinct Ca(2+), K(+), and Cl(-) conductances have been identified in rodent mast cells, but there are no data on human mast cells. We have used the whole-cell variant of the patch clamp technique to characterize for the first time macroscopic ion currents in purified human lung mast cells and human peripheral blood-derived mast cells at rest and following IgE-dependent activation. The majority of both mast cell types were electrically silent at rest with a resting membrane potential of around 0 mV. Following IgE-dependent activation, >90% of human peripheral blood-derived mast cells responded within 2 min with the development of a Ca(2+)-activated K(+) current exhibiting weak inward rectification, which polarized the cells to around -40 mV and a smaller outwardly rectifying Ca(2+)-independent Cl(-) conductance. Human lung mast cells showed more heterogeneity in their response to anti-IgE, with Ca(2+)-activated K(+) currents and Ca(2+)-independent Cl(-) currents developing in approximately 50% of cells. In both cell types, the K(+) current was blocked reversibly by charybdotoxin, which along with its electrophysiological properties suggests it is carried by a channel similar to the intermediate conductance Ca(2+)-activated K(+) channel. Charybdotoxin did not consistently attenuate histamine or leukotriene C(4) release, indicating that the Ca(2+)-activated K(+) current may enhance, but is not essential for, the release of these mediators.  相似文献   

4.
Experiments were performed to define quantitatively the substrate (K(+) and Cl(-)) dependence of the transport function (production of equally large and oppositely directed K(+)and Cl(-) flows/currents) of an earlier (Theander et al., 1999) identified electroneutral K-Cl cotransporter in the slowly adapting stretch receptor neurone of the European lobster. The experiments were based on microelectrode techniques. This allowed us to perform steady-state measurements of the so-called "instantaneous" current-voltage relationships (around a holding voltage of -65 mV after a blockage of the cell's action potential and hyperpolarization-activated currents) and intracellular ion concentrations at various settings of the extracellular K(+) and Cl(-) concentrations. From the results, we could then define steady-state values of all of the cell's non-KCl cotransporter K(+) and Cl(-) currents. Finally, the negative sums of the inferred non-KCl cotransporter K(+) and Cl(-) currents could be taken as equivalents of the K-Cl cotransporter's K(+) and Cl(-) currents for the reason that, in steady state, all membrane currents add up to zero. For the cotransporter currents, thus inferred for a range from 2.5/410.5 to 40.0/448.0 mM external K(+)/Cl(-), we found that their absolute values increased in a nonlinear fashion from about 5 nA cell(-1) at the lowest, to about 20 nA cell(-1) at the highest external K(+)/Cl(-) concentrations. Formally, this relationship could be reproduced by a Hill function-based enzyme kinetic expression simulating inward and outward transmembrane electroneutral ion transports. Following insertion of this expression into a comprehensive model of electrical membrane functions and intracellular solute and solvent control in the lobster stretch receptor neurone, the model predictions suggested that the K-Cl cotransporter does play an important role in (a) keeping intracellular Cl(-) low for a proper function of the cell's inhibitory system, and (b) enabling rapid transmembrane K(+) shifts that provide for a stabilization of the cell's membrane voltage and membrane excitability in cases of varying extracellular K(+) concentrations. The model predictions gave, however, no clear evidence that the K-Cl cotransporter is critically involved in the cell's volume regulation in conditions of varying extracellular osmolalities.  相似文献   

5.
Freshwater (FW) rainbow trout (Oncorhynchus mykiss) urinary bladders mounted in vitro under symmetrical saline conditions displayed electroneutral active absorption of Na(+) and Cl(-) from the mucosal side; the transepithelial potential (V(t)) was 0.1 mV, and the short-circuit current was less than 1 microA cm(-2). Removal of Na(+) from mucosal saline decreased Cl(-) absorption by 56% and removal of Cl(-) decreased Na(+) absorption by 69%. However, active net absorption of both Na(+) and Cl(-) was not abolished when Cl(-) or Na(+) was replaced with an impermeant ion (gluconate or choline, respectively). Under physiological conditions with artificial urine (?Na(+) = 2.12 mM, ?Cl(-) = 3.51 mM) bathing the mucosal surface and saline bathing the serosal surface, transepithelial potential (V(t)) increased to a serosal positive approximately +7.6 mV. Unidirectional influx rates of both Na(+) and Cl(-) were 10-20-fold lower but active absorption of both ions still occurred according to the Ussing flux ratio criterion. Replacement of Na(+) with choline, or Cl(-) with gluconate, in the mucosal artificial urine yielded no change in unidirectional influx of Cl(-) or Na(+), respectively. However, kinetic analyses indicated a decrease in maximum Na(+) transport rate (J(max)) of 66% with no change in affinity (K(m)) in the low Cl(-) mucosal solution relative to the control solution. Similarly, there was a 79% decrease in J(max) values for Cl(-), again with no change in K(m), in the low-Na(+) mucosal bathing. The mucosal addition of DIDS, amiloride or bumetanide (10(-4) M) had no effect on either Na(+) or Cl(-) transport, under either symmetrical saline or artificial urine/saline conditions. Addition of the three drugs simultaneously (10(-4) M), or chlorothiazide (10(-3) M), under symmetrical saline conditions also had no effect on Na(+) or Cl(-) transport rates. Cyanide (10(-3) M) addition to mucosal artificial urine caused a slowly developing decrease of Na(+) influx to 59% and Cl(-) influx to 50% in the period after drug addition. Na(+) and Cl(-) reabsorption appears to be a partially coupled process in the urinary bladder of O. mykiss; transport mechanisms are both dependent upon and independent of the other ion.  相似文献   

6.
We investigated the features of the inward-rectifier K channel Kir1.1 (ROMK) that underlie the saturation of currents through these channels as a function of permeant ion concentration. We compared values of maximal currents and apparent K(m) for three permeant ions: K(+), Rb(+), and NH(4)(+). Compared with K(+) (i(max) = 4.6 pA and K(m) = 10 mM at -100 mV), Rb(+) had a lower permeability, a lower i(max) (1.8 pA), and a higher K(m) (26 mM). For NH(4)(+), the permeability was reduced more with smaller changes in i(max) (3.7 pA) and K(m) (16 mM). We assessed the role of a site near the outer mouth of channel in the saturation process. This site could be occupied by either permeant ions or low-affinity blocking ions such as Na(+), Li(+), Mg(2+), and Ca(2+) with similar voltage dependence (apparent valence, 0.15-0.20). It prefers Mg(2+) over Ca(2+) and has a monovalent cation selectivity, based on the ability to displace Mg(2+), of K(+) > Li(+) ~ Na(+) > Rb(+) ~ NH(4)(+). Conversely, in the presence of Mg(2+), the K(m) for K(+) conductance was substantially increased. The ability of Mg(2+) to block the channels was reduced when four negatively charged amino acids in the extracellular domain of the channel were mutated to neutral residues. The apparent K(m) for K(+) conduction was unchanged by these mutations under control conditions but became sensitive to the presence of external negative charges when residual divalent cations were chelated with EDTA. The results suggest that a binding site in the outer mouth of the pore controls current saturation. Permeability is more affected by interactions with other sites within the selectivity filter. Most features of permeation (and block) could be simulated by a five-state kinetic model of ion movement through the channel.  相似文献   

7.
BACKGROUND AND AIMS: This work has been conducted to assist theoretical modelling of the different stages of the blue light (BL)-induced phototropic signalling pathway and ion transport activity across plant membranes. Ion fluxes (Ca(2+), H(+), K(+) and Cl(-)) in etiolated oat coleoptiles have been measured continuously before and during unilateral BL exposure. METHODS: Changes in ion fluxes at the illuminated (light) and shadowed (dark) sides of etiolated oat coleoptiles (Avena sativa) were studied using a non-invasive ion-selective microelectrode technique (MIFE). The bending response was also measured continuously, and correlations between the changes in various ion fluxes and bending response have been investigated. For each ion the difference (Delta) between the magnitudes of flux at the light and dark sides of the coleoptile was calculated. KEY RESULTS: Plants that demonstrated a phototropic bending response also demonstrated Ca(2+) influx into the light side approximately 20 min after the start of BL exposure. This is regarded as part of the perception and transduction stages of the BL-induced signal cascade. The first 10 min of bending were associated with substantial influx of H(+), K(+) and Cl(-) into the light (concave) side of the coleoptiles. CONCLUSIONS: The data suggest that Ca(2+) participates in the signalling stage of the BL-induced phototropism, whereas the phototropic bending response is linked to changes in the transport of H(+), K(+) and Cl(-).  相似文献   

8.
Mitochondrial membranes isolated from a rat heart muscle were incorporated into a bilayer lipid membrane (BLM) and channel currents were measured in 250/50 mmol/l KCl cis/trans solutions. The channel currents measured from -40 to +40 mV had various linear voltage-current relationships and K(+)/Cl(-) permeability ratios at distinct voltage ranges. The channels possessed K(+)-Cl(-) promiscuous property. Depending on voltage, membrane permeability suddenly switched from K(+) over Cl(-) to Cl(-) over K(+) and back. The channels had Cl(-)/K(+) > 1 permeability at potentials around 0 mV and the permeability was switched to K(+)/Cl(-) > 1 at more negative and positive potentials. The chloride channel blocker, 5-nitro-2-(phenylpropylamino)-benzoate (NPPB, 5 x 10(-5) mol/l), influenced properties of the promiscuous channels - it activated potassium conductance of the channels.  相似文献   

9.
Lew RR 《Plant & cell physiology》2010,51(11):1889-1899
Plasma membrane fluxes of the large unicellular model algal cell Eremosphaera viridis (De Bary) were measured under various light regimes to explore the role of plasma membrane fluxes during photosynthesis and high light-induced chloroplast translocation. Plasma membrane fluxes were measured directly and non-invasively with self-referencing ion-selective (H(+), Ca(2+), K(+) and Cl(-)) potentiometric microelectrodes and oxygen amperometric microelectrodes. At light irradiances high enough to induce chloroplast migration from the cell periphery to its center, oxygen evolution declined to respiratory net O(2) uptake prior to any significant chloroplast translocation, while net K(+) and Cl(-) influx increased during the decline in photosynthetic activity (and the membrane potential depolarized). The results suggest that chloroplast translocation is not the cause of the cessation of O(2) evolution at high irradiance. Rather, the chloroplast translocation may play a protective role: shielding the centrally located nucleus from damaging light intensities. At both high and low light intensities (similar to ambient growth conditions), there was a strong inverse correlation between H(+) net fluxes and respiratory and photosynthetic net O(2) fluxes. A similar inverse relationship was also observed for Ca(2+) net fluxes, but only at higher light intensities. The net H(+) fluxes are small relative to the buffering capacity of the cell, but are clearly related to both photosynthetic and respiratory activity.  相似文献   

10.
Cell-attached recordings revealed Cl(-) channel activity in basolateral membrane of guinea pig distal colonic crypts isolated from basement membrane. Outwardly rectified currents ((gp)Cl(or)) were apparent with a single-channel conductance (gamma) of 29 pS at resting membrane electrical potential; another outward rectifier with gamma of 24 pS was also observed ( approximately 25% of (gp)Cl(or)). At a holding potential of -80 mV gamma was 18 pS for both (gp)Cl(or) currents, and at +80 mV gamma was 67 and 40 pS, respectively. Identity as Cl(-) channels was confirmed in excised patches by changing bath ion composition. From reversal potentials, relative permeability of K(+) over Cl(-) (P(K)/P(Cl)) was 0.07 +/- 0.03, with relative permeability of Na(+) over Cl(-) (P(Na)/P(Cl)) = 0.08 +/- 0.04. A second type of Cl(-) channel was seen with linear current-voltage (I-V) relations ((gp)Cl(L)), having subtypes with gamma of 21, 13, and 8 pS. Epinephrine or forskolin increased the number of open (gp)Cl(or) and (gp)Cl(L). Open probabilities (P(o)) of (gp)Cl(or), (gp)Cl(L21), and (gp)Cl(L13) were voltage dependent in cell-attached patches, higher at more positive potentials. Kinetics of (gp)Cl(or) were more rapid with epinephrine activation than with forskolin activation. Epinephrine increased P(o) at the resting membrane potential for (gp)Cl(L13). Secretagogue activation of these Cl(-) channels may contribute to stimulation of electrogenic K(+) secretion across colonic epithelium by increasing basolateral membrane Cl(-) conductance that permits Cl(-) exit after uptake via Na(+)-K(+)-2Cl(-) cotransport.  相似文献   

11.
An animal-vegetal net ionic current identified previously using voltage probe techniques in maturing Xenopus laevis oocytes has now been investigated using noninvasive ion-selective microelectrodes. Three-dimensional fluxes of hydrogen (H(+)), potassium (K(+)), and bicarbonate (HCO(3)(-)) were characterized with respect to the developmental stage and hemisphere of the oocyte and presence of surrounding follicular tissue. Variable effluxes of H(+) and HCO(3)(-) were recorded from both the animal and vegetal hemispheres. Variable influxes and effluxes of K(+) were also observed. The equatorial region, silent by voltage probe, exhibited fluxes of H(+) and K(+). Simultaneous measurement of pairs of ions allowed correlation analysis of two ion types. Notably for H(+) and K(+) data, positive and negative correlation at animal and vegetal poles respectively offer an explanation of the unpredictable results obtained when individual ions were observed independently.  相似文献   

12.
We have investigated the functional role of Cl(-) in the human Na(+)/Cl(-)/gamma-aminobutyric acid (GABA) and Na(+)/glucose cotransporters (GAT1 and SGLT1, respectively) expressed in Xenopus laevis oocytes. Substrate-evoked steady-state inward currents were examined in the presence and absence of external Cl(-). Replacement of Cl(-) by gluconate or 2-(N-morpholino)ethanesulfonic acid decreased the apparent affinity of GAT1 and SGLT1 for Na(+) and the organic substrate. In the absence of substrate, GAT1 and SGLT1 exhibited charge movements that manifested as pre-steady-state current transients. Removal of Cl(-) shifted the voltage dependence of charge movements to more negative potentials, with apparent affinity constants (K(0.5)) for Cl(-) of 21 and 115 mm for SGLT1 and GAT1, respectively. The maximum charge moved and the apparent valence were not altered. GAT1 stoichiometry was determined by measuring GABA-evoked currents and the unidirectional influx of (36)Cl(-), (22)Na(+), or [(3)H]GABA. Uptake of each GABA molecule was accompanied by inward movement of 2 positive charges, which was entirely accounted for by the influx of Na(+) in the presence or absence of Cl(-). Thus, the GAT1 stoichiometry was 2Na(+):1GABA. However, Cl(-) was transported by GAT1 because the inward movement of 2 positive charges was accompanied by the influx of one Cl(-) ion, suggesting unidirectional influx of 2Na(+):1Cl(-):1GABA per transport cycle. Activation of forward Na(+)/Cl(-)/GABA transport evoked (36)Cl(-) efflux and was blocked by the inhibitor SKF 89976A. These data suggest a Cl(-)/Cl(-) exchange mechanism during the GAT1 transport cycle. In contrast, Cl(-) was not transported by SGLT1. Thus, in both GAT1 and SGLT1, Cl(-) modulates the kinetics of cotransport by altering Na(+) affinity, but does not contribute to net charge transported per transport cycle. We conclude that Cl(-) dependence per se is not a useful criterion to classify Na(+) cotransporters.  相似文献   

13.
In our quest to develop a tissue-engineered tear secretory system, we have tried to demonstrate active transepithelial ion fluxes across rabbit lacrimal acinar cell monolayers on polyester membrane scaffolds to evaluate the bioelectrical properties of the cultured cells. Purified lacrimal gland acinar cells were seeded onto polyester membrane inserts and cultured to confluency. Morphological properties of the cell monolayers were evaluated by transmission electron microscopy and immunofluorescence staining for Na(+),K(+)-ATPase and the tight junction-associated protein occludin. Sections revealed cell monolayers with well-maintained epithelial cell polarity, i.e., presence of apical (AP) secretory granules, microvilli, and junctional complexes. Na(+),K(+)-ATPase was localized on both the basal-lateral and apical plasma membranes. The presence of tight cell junctions was demonstrated by a positive circumferential stain for occludin. Bioelectrical properties of the cell monolayers were studied in Ussing chambers under short-circuit conditions. Active ion fluxes were evaluated by inhibiting the short-circuit current (I(sc)) with a Na(+),K(+)-ATPase inhibitor, ouabain (100 microM; basal-lateral, BL), and under Cl(-)-free buffer conditions after carbachol stimulation (CCh; 100 microM). The directional apical secretion of Cl(-) was demonstrated through pharmacological analysis, using amiloride (1 mM; BL) and bumetanide (0.1 mM; BL), respectively. Regulated protein secretion was evaluated by measuring the beta-hexosaminidase catalytic activity in the AP culture medium in response to 100 microM basal CCh. In summary, rabbit lacrimal acinar cell monolayers generate a Cl(-)-dependent, ouabain-sensitive AP --> BL I(sc) in response to CCh, consistent with current models for Na(+)-dependent Cl(-) secretion.  相似文献   

14.
The bronchial vasculature plays an important role in airway physiology and pathophysiology. We investigated the ion currents in canine bronchial smooth muscle cells using patch-clamp techniques. Sustained outward K(+) current evoked by step depolarizations was significantly inhibited by tetraethylamonium (1 and 10 mM) or by charybdotoxin (10(-6) M) but was not significantly affected by 4-aminopyridine (1 or 5 mM), suggesting that it was primarily a Ca(2+)-activated K(+) current. Consistent with this, the K(+) current was markedly increased by raising external Ca(2+) to 4 mM but was decreased by nifedipine (10(-6) M) or by removing external Ca(2+). When K(+) currents were blocked (by Cs(+) in the pipette), step depolarizations evoked transient inward currents with characteristics of L-type Ca(2+) current as follows: 1) activation that was voltage dependent (threshold and maximal at -50 and -10 mV, respectively); 2) inactivation that was time dependent and voltage dependent (voltage causing 50% maximal inactivation of -26 +/- 22 mV); and 3) blockade by nifedipine (10(-6) M). The thromboxane mimetic U-46619 (10(-6) M) caused a marked augmentation of outward K(+) current (as did 10 mM caffeine) lasting only 10-20 s; this was followed by significant suppression of the K(+) current lasting several minutes. Phenylephrine (10(-4) M) also suppressed the K(+) current to a similar degree but did not cause the initial transient augmentation. None of these three agonists elicited inward current of any kind. We conclude that bronchial arterial smooth muscle expresses Ca(2+)-dependent K(+) channels and voltage-dependent Ca(2+) channels and that its excitation does not involve activation of Cl(-) channels.  相似文献   

15.
The rat connexin40 gap junction channel is permeable to monovalent cations including tetramethylammonium and tetraethylammonium ions. Larger tetraalkyammonium (TAA(+)) ions beginning with tetrabutylammonium (TBA(+)) reduced KCl junctional currents disproportionately. Ionic blockade by tetrapentylammonium (TPeA(+)) and tetrahexylammonium (THxA(+)) ions were concentration- and voltage-dependent and occurred only when TAA(+) ions were on the same side as net K(+) efflux across the junction, indicative of block of the ionic permeation pathway. The voltage-dependent dissociation constants (K(m)(V(j))) were lower for THxA(+) than TPeA(+), consistent with steric effects within the pore. The K(m)-V(j) relationships for TPeA(+) and THxA(+) were fit with different reaction rate models for a symmetrical (homotypic) connexin gap junction channel and were described by either a one- or two-site model that assumed each ion traversed the entire V(j) field. Bilateral addition of TPeA(+) ions confirmed a common site of interaction within the pore that possessed identical K(m)(V(j)) values for cis-trans concentrations of TPeA(+) ions as indicated by the modeled I-V relations and rapid channel block that precluded unitary current measurements. The TAA(+) block of K(+) currents and bilateral TPeA(+) interactions did not alter V(j)-gating of Cx40 gap junctions. N-octyl-tributylammonium and -triethylammonium also blocked rCx40 channels with higher affinity and faster kinetics than TBA(+) or TPeA(+), indicative of a hydrophobic site within the pore near the site of block.  相似文献   

16.
S Zhang  S J Kehl    D Fedida 《Biophysical journal》2001,81(1):125-136
Zinc ions are known to induce a variable depolarizing shift of the ionic current half-activation potential and substantially slow the activation kinetics of most K(+) channels. In Kv1.5, Zn(2+) also reduces ionic current, and this is relieved by increasing the external K(+) or Cs(+) concentration. Here we have investigated the actions of Zn(2+) on the gating currents of Kv1.5 channels expressed in HEK cells. Zn(2+) shifted the midpoint of the charge-voltage (Q-V) curve substantially more (approximately 2 times) than it shifted the V(1/2) of the g-V curve, and this amounted to +60 mV at 1 mM Zn(2+). Both Q1 and Q2 activation charge components were similarly affected by Zn(2+), which indicated free access of Zn(2+) to channel closed states. The maximal charge movement was also reduced by 1 mM Zn(2+) by approximately 15%, from 1.6 +/- 0.5 to 1.4 +/- 0.47 pC (n = 4). Addition of external K(+) or Cs(+), which relieved the Zn(2+)-induced ionic current reduction, decreased the extent of the Zn(2+)-induced Q-V shift. In 135 mM extracellular Cs(+), 200 microM Zn(2+) reduced ionic current by only 8 +/- 1%, compared with 71% reduction in 0 mM extracellular Cs(+), and caused a comparable shift in both the g-V and Q-V relations (17.9 +/- 0.6 mV vs. 20.8 +/- 2.1 mV, n = 6). Our results confirm the presence of two independent binding sites involved in the Zn(2+) actions. Whereas binding to one site accounts for reduction of current and binding to the other site accounts for the gating shift in ionic current recordings, both sites contribute to the Zn(2+)-induced Q-V shift.  相似文献   

17.
Insect olfactory receptor neurons (ORNs) grown in primary cultures were studied using the patch-clamp technique in both conventional and amphotericin B perforated whole-cell configurations under voltage-clamp conditions. After 10-24 days in vitro, ORNs had a mean resting potential of -62 mV and an average input resistance of 3.2 GOmega. Five different voltage-dependent ionic currents were isolated: one Na(+), one Ca(2+) and three K(+) currents. The Na(+) current (35-300 pA) activated between -50 and -30 mV and was sensitive to 1 microM tetrodotoxin (TTX). The sustained Ca(2+) current activated between -30 and -20 mV, reached a maximum amplitude at 0 mV (-4.5 +/- 6.0 pA) that increased when Ba(2+) was added to the bath and was blocked by 1 mM Co(2+). Total outward currents were composed of three K(+) currents: a Ca(2+)-activated K(+) current activated between -40 and -30 mV and reached a maximum amplitude at +40 mV (605 +/- 351 pA); a delayed-rectifier K(+) current activated between -30 and -10 mV, had a mean amplitude of 111 +/- 67 pA at +60 mV and was inhibited by 20 mM tetraethylammonium (TEA); and, finally, more than half of ORNs exhibited an A-like current strongly dependent on the holding potential and inhibited by 5 mM 4-aminopyridine (4-AP). Pheromone stimulation evoked inward current as measured by single channel recordings.  相似文献   

18.
To better comprehend the role of gill ion regulatory mechanisms, the modulation by Na(+), K(+), NH(4)(+) and ATP of (Na(+), K(+))-ATPase activity was examined in a posterior gill microsomal fraction from the hermit crab, Clibanarius vittatus. Under saturating Mg(2+), Na(+) and K(+) concentrations, two well-defined ATP hydrolyzing sites were revealed. ATP was hydrolyzed at the high-affinity sites at a maximum rate of V=19.1+/-0.8 U mg(-1) and K(0.5)=63.8+/-2.9 nmol L(-1), obeying cooperative kinetics (n(H)=1.9); at the low-affinity sites, hydrolysis obeyed Michaelis-Menten kinetics with K(M)=44.1+/-2.6 mumol L(-1) and V=123.5+/-6.1 U mg(-1). Stimulation by Na(+) (V=149.0+/-7.4 U mg(-1); K(M)=7.4+/-0.4 mmol L(-1)), Mg(2+) (V=132.0+/-5.3 U mg(-1); K(0.5)=0.36+/-0.02 mmol L(-1)), NH(4)(+) (V=245.6+/-9.8 U mg(-1); K(M)=4.5+/-0.2 mmol L(-1)) and K(+) (V=140.0+/-4.9 U mg(-1); K(M)=1.5+/-0.1 mmol L(-1)) followed a single saturation curve and, except for Mg(2+), obeyed Michaelis-Menten kinetics. Under optimal ionic conditions, but in the absence of NH(4)(+), ouabain (K(I)=117.3+/-3.5 mumol L(-1)) and orthovanadate inhibited up to 67% of the ATPase activity. The inhibition studies performed suggest the presence of F(0)F(1), V- and P-ATPases, but not Na(+)-, K(+)- or Ca(2+)-ATPases as contaminants in the gill microsomal preparation. (Na(+), K(+))-ATPase activity was synergistically modulated by NH(4)(+) and K(+). At 20 mmol L(-1) K(+), a maximum rate of V=290.8+/-14.5 U mg(-1) was seen as NH(4)(+) concentration was increased up to 50 mmol L(-1). However, at fixed NH(4)(+) concentrations, no additional stimulation was found for increasing K(+) concentrations (V=135.2+/-4.1 U mg(-1) and V=236.6+/-9.5 U mg(-1) and for 10 and 30 mmol L(-1) NH(4)(+), respectively). This is the first report to detail ionic modulation of gill (Na(+), K(+))-ATPase in C. vittatus, revealing an asymmetrical, synergistic stimulation of the enzyme by K(+) and NH(4)(+), as yet undescribed for other (Na(+), K(+))-ATPases, and should provide a better understanding of NH(4)(+) excretion in pagurid crabs.  相似文献   

19.
We present a thorough calibration and verification of a combined non-invasive self-referencing microelectrode-based ion-flux measurement and whole-cell patch clamp system as a novel and powerful tool for the study of ion transport. The system is shown to be capable of revealing the movement of multiple ions across the plasma membrane of a single protoplast at multiple voltages and in complex physiologically relevant solutions. Wheat root protoplasts are patch clamped in the whole-cell configuration and current-voltage relations obtained whilst monitoring net K+ and Ca2+ flux adjacent to the membrane with ion-selective electrodes. At each voltage, net ion flux (nmol m(-2) sec(-1)) is converted to an equivalent current density (mA m(-2)) taking into account geometry and electrode efficiency, and compared with the net current density measured with the patch clamp system. Using this technique, it is demonstrated that the K+-permeable outwardly rectifying conductance (KORC) is responsible for net outward K+ movement across the plasma membrane [1:1 flux-to-current ratio (1.21 +/- 0.14 SEM, n = 15)]. Variation in the K+ flux-to-current ratio among single protoplasts suggests a heterogeneous distribution of KORC channels on the membrane surface. As a demonstration of the power of the technique we show that despite a significant Ca2+ permeability being associated with KORC (analysis of tail current reversal potentials), there is no correlation between Ca2+ flux and KORC activity. A very significant observation is that large Ca2+ fluxes are electrically silent and probably tightly coupled to compensatory charge movements. This analysis demonstrates that it is mandatory to measure flux and currents simultaneously to investigate properly Ca2+ transport mechanisms and selectivity of ion channels in general.  相似文献   

20.
In cardiac cells that lack macroscopic transient outward K(+) currents (I(to)), the removal of extracellular Ca(2+) can unmask "I(to)-like" currents. With the use of pig ventricular myocytes and the whole cell patch-clamp technique, we examined the possibility that cation efflux via L-type Ca(2+) channels underlies these currents. Removal of extracellular Ca(2+) and extracellular Mg(2+) induced time-independent currents at all potentials and time-dependent currents at potentials greater than -50 mV. Either K(+) or Cs(+) could carry the time-dependent currents, with reversal potential of +8 mV with internal K(+) and +34 mV with Cs(+). Activation and inactivation were voltage dependent [Boltzmann distributions with potential of half-maximal value (V(1/2)) = -24 mV and slope = -9 mV for activation; V(1/2) = -58 mV and slope = 13 mV for inactivation]. The time-dependent currents were resistant to 4-aminopyridine and to DIDS but blocked by nifedipine at high concentrations (IC(50) = 2 microM) as well as by verapamil and diltiazem. They could be increased by BAY K-8644 or by isoproterenol. We conclude that the I(to)-like currents are due to monovalent cation flow through L-type Ca(2+) channels, which in pig myocytes show low sensitivity to nifedipine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号