首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between surface proteins of some enveloped viruses and trypsin was studied by computer analysis. Prior to the cleavage of the viral protein by trypsin, hydrophobic interaction between them at the vicinity of their active sites may occur. An exposed hydrophobic portion was found there which theoretically could stimulate the interaction. This interaction would be rather non-specific: according to the analysis, trypsin could bind equally well with weakly virulent virus and virulent viruses. Following this interaction, a specific reaction between their active sites would occur. The specificity was found to be related to the virulency of the virus.  相似文献   

2.
R Blasco  B Moss 《Journal of virology》1992,66(7):4170-4179
The roles of intracellular naked (INV), cell-associated enveloped (CEV), and extracellular enveloped (EEV) forms of vaccinia virus in cell-to-cell and longer-range spread were investigated by using two closely related strains of vaccinia virus, WR and IHD-J. We confirmed previous results that WR and IHD-J produced similar amounts of INV and formed similar-size primary plaques but that IHD-J produced 10 to 40 times more EEV and spread to distant cells much more efficiently than did WR. Nevertheless, cells infected with WR and IHD-J had similar amounts of CEV, indicating that wrapping and transport of WR virions were unimpaired. A WR mutant with a deletion in VP37, the major outer envelope protein, formed normal amounts of INV; however, the generation of CEV was blocked and plaque formation was inhibited. These results suggested that CEV is the form of virus that mediates cell-to-cell spread. Marker rescue experiments indicated that the differences in EEV production by WR and IHD-J were not due to sequence differences in VP37. The low amount of WR EEV could be attributed to retention of CEV on the cell membrane. In support of this hypothesis, mild treatment with trypsin released as much or more infectious virus from cells infected with WR as it did with cells infected with IHD-J. Most of the virus released by trypsin sedimented with the buoyant density of EEV. Also, addition of trypsin to cells following inoculation with WR led to a comet-shaped distribution of secondary plaques characteristic of IHD-J. These results demonstrated that the release of CEV from the cell surface was limiting for extracellular virus formation and affirmed the role of EEV in long-range spread.  相似文献   

3.
M Dolyniuk  E Wolff    E Kieff 《Journal of virology》1976,18(1):289-297
Two series of experiments were undertaken to identify the topological location of the structural polypeptides of Epstein-Barr virus. In the first series of experiments, nucleocapsids prepared by detergent treatment of enveloped virus with Nonidet P-40 and sodium deoxycholate were found to be composed of seven polypeptides, VP2, 6, 7.5, 24, 27, 31, ANd 33, which ranged in molecular weight from over 200 X 10(3) to 28 X 10(3). Nine other polypeptides, VP 4, 7, 8, 10, 15, 16, 23, 28, and 29, could be identified in preparations of Epstein-Barr virus nucleocapsids, but the relative amount of this second group of polypeptides was less in preparations of nucleocapsids than in preparations of enveloped virus. The incomplete removal of these polypeptides from enveloped virus by detergent treatment suggests that some of these polypeptides may be components of the envelope or tegument that lie in close proximity to the outer surface of the nucleocapsid In the second series of experiments periodic acid-Schiff-staining and glucosamine-containing components were identified with similar electrophoretic mobility to several of the polypeptides of enveloped virus (VP 5, 8, 9, 11, 12, 13, 14, 15, 16, 17, 28, and 29) that were completely or incompletely removed from purified virus preparations by detergent treatment. The similarity between the polypeptide composition of the nucleocapsids of Epstein-Barr virus and herpes simplex virus was in contrast to the dissimilarity between the nonnucleocapsid polypeptides of Epstein-Barr virus and herpes simplex virus.  相似文献   

4.
We have used linker scanning and site-directed mutagenesis in an attempt to distinguish among the known functions of the duck hepatitis B virus large envelope protein, p36. We found that linker-encoded amino acid substitutions in at least one region of the pre-S envelope protein p36 produced defects in both the production of enveloped virus and the regulation of covalently closed circular DNA (cccDNA) synthesis. Most linker substitutions, typically in the 5' two-thirds of the pre-S region of the p36 gene did not affect either cccDNA regulation or enveloped virus production but did destroy the infection competence of the enveloped particles produced. Single amino acid substitutions of residues 128 and 131 demonstrated a similar correlation between defects in the ability of p36 to support enveloped virus production and to control cccDNA levels. We concluded from these studies that virus production and cccDNA regulation probably require a common activity of p36.  相似文献   

5.
Analysis of purified naked and enveloped nucleocapsids of pseudorabies virus with high-resolution techniques has allowed a reassessment of their protein composition. Enveloped particles are shown to contain at least 20 proteins whose molecular weights are in the range 20,000 to 230,000. Naked nucleocapsids contain one major and seven minor proteins in the molecular weight range 20,000 to 155,000. Phosphorylation of at least one virion protein is shown to take place in vivo. These results demonstrate that pseudorabies virus is similar in its protein complement to other herpesviruses which have recently been examined.  相似文献   

6.
The maturation and envelopment of varicella-zoster virus (VZV) was studied in infected human embryonic lung fibroblasts. Transmission electron microscopy confirmed that nucleocapsids acquire an envelope from the inner nuclear membrane as they enter the perinuclear-cisterna-rough endoplasmic reticulum (RER). Tegument is not detectable in these virions; moreover, in contrast to the mature VZV envelope, the envelope of VZV in the RER is not radioautographically labeled in pulse-chase experiments with [3H]mannose, and it lacks gpI immunoreactivity and complex oligosaccharides. This primary envelope fuses with the RER membrane (detected in cells incubated at 20 degrees C), thereby releasing nucleocapsids to the cytosol. Viral glycoproteins, traced by transmission electron microscopy radioautography in pulse-chase experiments with [3H]mannose, are transported to the trans-Golgi network (TGN) by a pathway that runs from the RER through an intermediate compartment and the Golgi stack. At later chase intervals, [3H]mannose labeling becomes associated with enveloped virions in post-Golgi locations (prelysosomes and plasma membrane). Nucleocapsids appear to be enveloped by wrapping in specialized cisternae, identified as the TGN with specific markers. Tegument-like material adheres to the cytosolic face of the concave surface of TGN sacs; nucleocapsids adhere to this protein, which is thus trapped between the nucleocapsid and the TGN-derived membrane that wraps around it. Experiments with brefeldin A suggest that tegument may bind to the cytosolic tails of viral glycoproteins. Fusion and fission convert the TGN-derived wrapping sacs into an inner enveloped virion and an outer transport vesicle that carries newly enveloped virions to cytoplasmic vacuoles. These vacuoles are acidic and were identified as prelysosomes. It is postulated that secreted virions are partially degraded by their exposure to the prelysosomal internal milieu and rendered noninfectious. This process explains the cell-associated nature of VZV in vitro; however, the mechanism by which the virus escapes diversion from the secretory pathway to the lysosomal pathway in vivo remains to be determined.  相似文献   

7.
Rotavirus, a double-shelled nonenveloped member of the REoviridae family, becomes transiently membrane enveloped during its maturation process, as single-shelled particles bud from cytoplasmic viroplasm structures into the adjacent endoplasmic reticulum. The present study describes the isolation of these membrane-enveloped viral intermediates from rotavirus SA11-infected Ma104 cells. The enveloped intermediates comprised the proteins VP1, VP2, VP4, VP6, VP7, and NS28 and small amounts of NS35 and NS34. VP7 in the intermediate particles was recognized by either a polyclonal antibody to VP7, which previous studies had shown recognizes the membrane-associated form of VP7, or a monoclonal antibody which recognizes VP7 on mature virus. NS28, VP7, and VP4 could be complexed to a higher-molecular-weight form when the membrane-permeable cross-linker dithiobis(succinimidylproprionate) was used. However, when an impermeable cross-linker was used, the structural proteins, including VP7, were not accessible to cross-linking. Velocity sedimentation of cross-linked immunoisolated enveloped virus particles showed that VP7 and VP4 were located in the same fractions only when the membrane-permeable cross-linker was used, implying their heterooligomeric association during outer capsid formation. When intermediate enveloped virus particles were treated with protease, VP6 and VP7 were protected, but not in the presence of detergent. Taken together, these results support the idea that in the membrane-enveloped intermediate, VP7 is repositioned from its location in the endoplasmic reticulum lumen back across the viral membrane envelope to the inferior of the virus particle during the maturation process.  相似文献   

8.
R Blasco  B Moss 《Journal of virology》1991,65(11):5910-5920
There are two types of infectious vaccinia virus particles: intracellular naked virions and extracellular enveloped virions (EEV). To determine the biological role of the enveloped form of vaccinia virus, we produced and characterized a mutant that is defective in EEV formation. The strategy involved replacement by homologous recombination of the gene F13L, encoding a 37,000-Da protein (VP37) that is specific for the outer envelope of EEV, with a selectable antibiotic resistance marker, the Escherichia coli gpt gene. Initial experiments, however, suggested that such a mutation was lethal or prevented plaque formation. By employing a protocol consisting of high-multiplicity passages of intracellular virus from the transfected cells and then limiting dilution cloning, we succeeded in isolating the desired mutant, which was defective in production of plaques and extracellular virus but made normal amounts of intracellular naked virions. Electron microscopic examination indicated that the mutant virus particles, unlike wild type, were neither wrapped with Golgi-derived membranes nor associated with the cell surface. The absence of VP37 did not prevent the transport of the viral hemagglutinin to the plasma membrane but nevertheless abrogated both low-pH- and antibody-mediated cell fusion. These results indicate that VP37 is required for EEV formation and also plays a critical role in the local cell-to-cell transmission of vaccinia virus, perhaps via enveloped virions attached to or released from the cell membrane. By contrast, a mutated virus with a deletion of the K4L open reading frame, which is a homolog of the VP37 gene, was not defective in formation of plaques or EEV.  相似文献   

9.
A Barge  Y Gaudin  P Coulon    R W Ruigrok 《Journal of virology》1993,67(12):7246-7253
Vesicular stomatitis virus is an enveloped virus with an external glycoprotein G and a nucleocapsid that form, together with the M protein, a tight helically coiled structure: the skeleton. Negative staining and immunoelectron microscopy studies on skeleton preparations were performed to determine the localization of the M protein. These studies have resulted in a new model for the structure of rhabdoviruses in which the nucleocapsid is wound around a core containing the M protein. This model predicts contact between M and lipid only at the extreme ends of the skeleton, which is confirmed by skeleton-liposome binding studies.  相似文献   

10.
The enveloped virions of a nuclear polyhedrosis virus (NPV) and those of a granulosis virus (GV) of the armyworm, Pseudaletia unipuncta, were isolated and purified from their inclusion bodies. The enveloped virion of NPV contained a large amount of phosphatidyl choline which was not detected in that of GV. The total electric charges distributed on the surface of the envelopes of NPV and GV were negative in neutral and alkaline solutions. Although there was little difference in charges between NPV and GV, the charge was less negative in NPV than in GV. When the negative charges were neutralized by cationic detergents, the NPV infectivity was enhanced.  相似文献   

11.
Herpes simplex virus (HSV) requires the host cell secretory apparatus for transport and processing of membrane glycoproteins during the course of virus assembly. Brefeldin A (BFA) has been reported to induce retrograde movement of molecules from the Golgi to the endoplasmic reticulum and to cause disassembly of the Golgi complex. We examined the effects of BFA on propagation of HSV type 1. Release of virions into the extracellular medium was blocked by as little as 0.3 microgram of BFA per ml when present from 2 h postinfection. Characterization of infected cells revealed that BFA inhibited infectious viral particle formation without affecting nucleocapsid formation. Electron microscopic analyses of BFA-treated and untreated cells (as in control cells) demonstrated that viral particles were enveloped at the inner nuclear membrane in BFA-treated cells and accumulated aberrantly in this region. Most of the progeny virus particles observed in the cytoplasm of control cells, but not that of BFA-treated cells, were enveloped and contained within membrane vesicles, whereas many unenveloped nucleocapsids were detected in the cytoplasm of BFA-treated cells. This suggests that BFA prevents the transport of enveloped particles from the perinuclear space to the cytoplasmic vesicles. These findings indicate that BFA-induced retrograde movement of molecules from the Golgi complex to the endoplasmic reticulum early in infection arrests the ability of host cells to support maturation and egress of enveloped viral particles. Furthermore, we demonstrate that the effects of BFA on HSV propagation are not fully reversible, indicating that maturation and egress of HSV type 1 particles relies on a series of events which cannot be easily reconstituted after the block to secretion is relieved.  相似文献   

12.
A trypsin-like protease which is responsible for activation of Sendai virus was found in the chorioallantoic fluid (CAF) of embryonated chicken eggs. Treatment of the inactive form of Sendai virus, grown in LLC-MK2 cells, with CAF enhanced both hemolytic activity and infectivity for the cells. Soybean trypsin inhibitor restrained the enhancing activity of CAF. These results indicate that CAF contains a trypsin-like protease which activates the inactive form of Sendai virus. The activation was strongly inhibited by phenylmethylsulfonylfluoride, ethylenediaminetetraacetate, antipain, and leupeptin but not by tosyllysylchloromethylketone, suggesting that the activating enzyme in CAF is a protease similar to but not identical with trypsin. The inactive form of the virion was produced in ovo when the seed virus was inoculated along with antipain or leupeptin. In deembryonated chicken eggs in which CAF was substituted for a culture medium, multiple cycle growth occurred, but not when soybean trypsin inhibitor was present. These observations indicate that some activating enzyme, possibly the same one as found in CAF, was secreted from the chorioallantoic membrane.  相似文献   

13.
Semliki Forest virus is an enveloped alphavirus that infects cells by a membrane fusion reaction triggered by the low pH present in endocytic vacuoles. Fusion is mediated by the E1 spike protein subunit. During fusion, several conformational changes occur in E1 and E2, the two transmembrane subunits of the spike protein. These changes include dissociation of the E1-E2 dimer, alteration of the trypsin sensitivity and monoclonal antibody binding patterns of E1, and formation of a sodium dodecyl sulfate (SDS)-resistant E1 homotrimer. A critical characteristic of Semliki Forest virus fusion is also its dependence on the presence of both cholesterol and sphingomyelin in the target membrane. We have here examined the conformational changes induced by low pH treatment of E1*, the water-soluble, proteolytically truncated ectodomain of the E1 subunit. Following low pH treatment, E1* was shown to bind efficiently to artificial liposomes. Similar to virus fusion, optimal E1*-liposome binding required low pH, cholesterol, and sphingomyelin. The E1 ectodomain, although monomeric in its neutral pH form, assembled into an SDS-resistant oligomer following treatment at low pH. This low pH-induced oligomerization required target membranes containing both cholesterol and sphingomyelin. Our results demonstrate that the E1 ectodomain responds to low pH similarly to the full-length E1 subunit. The ectodomain facilitates the characterization of conformational changes and membrane binding in the absence of virus fusion or other virus components.  相似文献   

14.
Irie T  Sakaguchi T 《Uirusu》2007,57(1):1-7
Our knowledge about envelope virus budding has been dramatically increased, since L-domain motifs were identified within their matrix and retroviral Gag proteins which drive virus budding. These viral proteins have been shown to interact with host cellular proteins involved in endocytosis and/or multi-vesicular body (MVB) sorting via their L-domains. Since budding of many enveloped viruses have been reported to be dependent on the activity of cellular Vps4, which catalyzes the disassembly of ESCRT machinery in the final step of protein sorting, this cellular function is believed to be utilized for efficient virus budding. However, for many enveloped viruses, L-domain motifs have not yet been identified, and the involvement of MVB sorting machinery in virus budding is still unknown. In this review, we will focus on paramyxoviruses among such viruses, and discuss their budding with the latest information.  相似文献   

15.
The cytoplasmic compartments occupied by exocytosing herpes simplex virus (HSV) are poorly defined. It is unclear which organelles contain the majority of trafficking virions and which are occupied by virions on a productive rather than defective assembly pathway. These problems are compounded by the fact that HSV-infected cells produce virus continuously over many hours. All stages in viral assembly and export therefore coexist, making it impossible to determine the sequence of events and their kinetics. To address these problems, we have established assays to monitor the presence of capsids and enveloped virions in cell extracts and prepared HSV-containing organelles from normally infected cells and from cells undergoing a single synchronized wave of viral egress. We find that, in both cases, HSV particles exit the nucleus and accumulate in organelles which cofractionate with the trans-Golgi network (TGN) and endosomes. In addition to carrying enveloped infectious virions in their lumen, HSV-bearing organelles also displayed nonenveloped capsids attached to their cytoplasmic surface. Neutralization of organellar pH by chloroquine or bafilomycin A resulted in the accumulation of noninfectious enveloped particles. We conclude that the organelles of the TGN/endocytic network play a key role in the assembly and trafficking of infectious HSV.  相似文献   

16.
Electron microscopic examination and buoyant density profiles of nonoccluded Rachiplusia ou and Autographa californica nuclear polyhedrosis viruses purified from both infectious insect hemolymph and cell culture medium revealed that the viruses are enveloped, single nucleocapsids. The envelopes exhibited variation in the amount and degree of fit with regard to the nucleocapsids. This was determined by: (i) electron microscopic observations of virus budding from the surface of infected cells; (ii) electron microscopic observations of negatively stained preparations of pelleted, highly purified, nonoccluded enveloped particles; and (iii) the resolution and density distributions of nonoccluded virus in sucrose gradients after centrifugation to equilibrium; all were compared with virus extracted from polyhedra. Peplomers, ovserved on the surface of enveloped nucleocapsids of nonoccluded virus, are not associated with polyhedra-derived virus. Density gradient analysis indicated that virus from insect hemolymph and culture medium exhibited similar densities of approximately 1.17 to 1.18 g/ml. This is significantly different from the buoyant density of an alkali-liberated, enveloped single nucleocapsid (1.20 g/ml). Results of this study show that the nonoccluded forms of two nuclear polyhedrosis viruses from two different sources, hemolymph and cell culture, are similar with regard to several morphological and biophysical characteristics but are quite different from the alkali-liberated, polyhedra-derived form of the virus.  相似文献   

17.
Human T-lymphotropic virus 1 (HTLV-1) is transmitted directly between cells via an organized cell-cell contact called a virological synapse (VS). The VS has been studied by light microscopy, but the ultrastructure of the VS and the nature of the transmitted viral particle have remained unknown. Cell-free enveloped virions of HTLV-1 are undetectable in the serum of individuals infected with the human T-lymphotropic virus 1 (HTLV-1) and during in vitro culture of naturally infected lymphocytes. However, the viral envelope protein is required for infectivity of HTLV-1, suggesting that complete, enveloped HTLV-1 virions are transferred across the synapse. Here, we use electron tomography combined with immunostaining of viral protein to demonstrate the presence of enveloped HTLV-1 particles within the VS formed between naturally infected lymphocytes. We show in 3D that HTLV-1 particles can be detected in multiple synaptic clefts at different locations simultaneously within the same VS. The synaptic clefts are surrounded by the tightly apposed plasma membranes of the two cells. HTLV-1 virions can contact the recipient cell membrane before detaching from the infected cell. The results show that the HTLV-1 virological synapse that forms spontaneously between lymphocytes of HTLV-1 infected individuals allows direct cell-cell transmission of the virus by triggered, directional release of enveloped HTLV-1 particles into confined intercellular spaces.  相似文献   

18.
Sendai virus grown in fertile eggs (egg Sendai) infects L cells in which the synthesis of L Sendai (grown in L cells) occurs by the one-step mechanism. L Sendai is not infectious for L cells when tested by the tube titration method although it is infectious for chick embryos. When L cells infected with egg Sendai were dispersed by trypsin and plated on a monolayer culture of L cells, the viral agents spread to the adjacent recipient cells in which the synthesis of L Sendai occurred. The newly infected L cells became infectious for L cells again by trypsin treatment. Kinetic experiments suggested that the target of trypsin is the mature virus, of L Sendai nature, just budding from the L-cell surface. By using an immunofluorescent cell-counting technique, recovery of the infectivity of L Sendai for L cells due to a direct enzymatic action of trypsin was demonstrated. Under the optimal condition, the infectivity increased 1,000-fold for L cells and 10-fold for chick embryos, and both the titers could favorably be compared. No increasing effect of trypsin was observed on the infectivity of egg Sendai. Density centrifugation studies revealed a difference between egg Sendai and L Sendai in the density. Trypsin treatment which induced the maximal enhancement of L Sendai infectivity did not affect both the densities, showing that variations of Sendai virus in the infectivity for L cells and in the density are independent types of host-controlled modification.  相似文献   

19.
Membrane fusion and budding are key steps in the life cycle of all enveloped viruses. Semliki Forest virus (SFV) is an enveloped alphavirus that requires cellular membrane cholesterol for both membrane fusion and efficient exit of progeny virus from infected cells. We selected an SFV mutant, srf-3, that was strikingly independent of cholesterol for growth. This phenotype was conferred by a single amino acid change in the E1 spike protein subunit, proline 226 to serine, that increased the cholesterol independence of both srf-3 fusion and exit. The srf-3 mutant emphasizes the relationship between the role of cholesterol in membrane fusion and virus exit, and most significantly, identifies a novel spike protein region involved in the virus cholesterol requirement.  相似文献   

20.
Katz E  Wolffe E  Moss B 《Journal of virology》2002,76(22):11637-11644
The spread of most strains of vaccinia virus in cell monolayers occurs predominantly via extracellular enveloped virions that adhere to the tips of actin-containing microvilli and to a lesser extent via diffusion of released virions. The mechanism by which virions adhere to the cell surface is unknown, although several viral proteins may be involved. The present investigation was initiated with the following premise: spontaneous mutations that increase virus release will be naturally selected by propagating a virus unable to spread by means of actin tails. Starting with an A36R deletion mutant that forms small, round plaques, five independent virus clones with enhanced spread due to the formation of comet or satellite plaques were isolated. The viral membrane glycoprotein genes of the isolates were sequenced; four had mutations causing C-terminal truncations of the A33R protein, and one had a serine replacing proline 189 of the B5R protein. The comet-forming phenotype was specifically reproduced or reversed by homologous recombination using DNA containing the mutated or natural sequence, respectively. Considerably more extracellular enveloped virus was released into the medium by the second-site mutants than by the parental A36R deletion mutant, explaining their selection in tissue culture as well as their comet-forming phenotype. The data suggest that the B5R protein and the C-terminal region of the A33R protein are involved in adherence of cell-associated enveloped virions to cells. In spite of their selective advantage in cultured cells, the second-site mutants were not detectably more virulent than the A36R deletion mutant when administered to mice by the intranasal route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号