首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMP deaminase was completely solubilized from rat skeletal muscle with 50 mM Tris-HCl buffer (pH 7.0) containing KCl at a concentration of 0.3 M or more. The purified enzyme was found to be bound to rat muscle myosin or actomyosin, but not to F-actin at KCl concentrations of less than 0.3 M. Kinetic analysis indicated that 1 mol of AMP deaminase was bound to 3 mol of myosin and that the dissociation constant (Kd) of this binding was 0.06 μM. It was also shown that AMP deaminase from muscle interacted mainly with the light meromyosin portion of the myosin molecule. This finding differs from that of Ashby and coworkers on rabbit muscle AMP deaminase, probably due to a difference in the properties of rat and rabbit muscle AMP deaminase.AMP deaminase isozymes from rat liver, kidney and cardiac muscle did not interact with rat muscle myosin. The physiological significance of this binding of AMP deaminase to myosin is discussed.  相似文献   

2.
The problems of whether the kinetic and regulatory properties of AMP deaminase were modified by formation of a deaminase-myosin complex were investigated with an enzyme preparation from rat skeletal muscle. Results showed that AMP deaminase was activated by binding to myosin. Myosin-bound AMP deaminase showed a sigmoidal activity curve with respect to AMP concentration in the absence of ATP and ADP, but a hyperbolic curve in their presence. Addition of ATP and ADP doubled the V value, but did not affect the Km value. Myosin-bound AMP deaminase also gave a sigmoidal curve in the presence of alkali metal ions, whereas free AMP deaminase gave a hyperbolic curve. GTP abolished the activating effects of both myosin and ATP.  相似文献   

3.
Purified rat muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) binds tightly to rat myosin. The binding is abolished in the presence of low concentrations of various ligands. Pyrophosphate and GTP at concentrations as low as 0.1 micrometer were effective in abolishing the interaction between two proteins. Other nucleoside triphosphates were less effective than GTP and the concentrations required for 50% inhibition were approximately 0.3 to 0.7 micrometer. ADP and AMP are effective in inhibiting the interaction between two proteins, but they are less effective than the nucleoside triphosphates; 50% inhibition occurred at 34 micrometer with ADP and at 1 mM with AMP. Creatine phosphate and inorganic phosphate showed 50% inhibition at 5 to 6 mM. All of the compounds, which affected AMP deaminase activity, were effective in abolishing the interaction of the enzyme with myosin; however, the interaction-abolishing effects of the compounds are not parallel with their inhibitory effects on the deaminase activity. Although there exist three parental isozymes of AMP deaminase in the rat, all three enzymes interacted with myosin.  相似文献   

4.
5.
A new simple enzymatic method for measuring AMP content in freeze-clamped rat heart is presented. The method is based on the ammonia estimation after the deamination of 5'-AMP by muscle 5'-adenylic acid deaminase. The minimum detectable amount of AMP was about 1.5 nmol. The recovery of AMP added to the tissue homogenate was 94%. The variance coefficient evaluated by assaying five samples from one tissue extract was equal to 5%. AMP content of rat heart (0.28 mumol/g wet tissue) is comparable with the values reported by others.  相似文献   

6.
7.
Interaction of AMP deaminase with RNA   总被引:1,自引:0,他引:1  
tRNA, 18 S and 28 S ribosomal RNAs were found to activate muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) but inhibit liver and heart AMP deaminases. The macromolecular structures are essential for modulation of enzyme activity, since the effects of RNA disappeared after RNAase treatment. Sucrose density centrifugation experiments clearly demonstrated the binding of purified muscle AMP deaminase to tRNA, 18 S and 28 S RNAs. The binding is reversible and responsive to alterations of pH and KCl concentration. The binding was stable at pH 5.1-7.0 in 0.1 M KCl, but most of the enzyme dissociated at pH 7.5. KCl below 0.1 M concentration had no effect on dissociation of enzyme-RNA complex, but in 0.15 M KCl the complex was partially dissociated and in 0.2 M KCl most of the enzyme was released. Various nucleotides were also effective in dissociation of the enzyme from complex. The binding is saturable and the maximum number of muscle AMP deaminase molecules bound per mol 28 S RNA was calculated to be approx. 30. Liver and heart AMP deaminases were also found to interact with RNA.  相似文献   

8.
Diadenosine tetraphosphate activates AMP deaminase from rat muscle   总被引:1,自引:0,他引:1  
Diadenosine tetraphosphate, Ap4A, doubled the activity of AMP deaminase from rat muscle, with an activation constant of 0.005 mM, in the presence of 0.05 mM AMP. The presence of Ap4A appeared to induce Michaelian kinetic behavior. The activation by Ap4A was not dependent on the presence of either MgCl2 or KCl in the reaction mixture. Diguanosine tetraphosphate was inhibitor of the enzyme. Diadenosine and diguanosine triphosphates, adenylosuccinate and xanthosine monophosphate were neither inhibitors nor activators of the reaction.  相似文献   

9.
AMP deaminase catalyzes deamination of the AMP formed in contracting muscles to inosine 5'-monophosphate (IMP). Slow-twitch muscle has only approximately 30% as high a level of AMP deaminase activity as fast-twitch muscle in the rat, and rates of IMP formation during intense contractile activity are much lower in slow-twitch muscle. We found that feeding the creatine analogue beta-guanidinopropionic acid (beta-GPA) to rats, which results in creatine depletion, causes a large decrease in muscle AMP deaminase. This adaptation was used to evaluate the role of AMP deaminase activity level in accounting for differences in IMP production in slow-twitch and fast-twitch muscles. beta-GPA feeding for 3 wk lowered AMP deaminase activity in fast-twitch epitrochlearis muscle to a level similar to that found in the normal slow-twitch soleus muscle but had no effect on the magnitude of the increase in IMP in response to intense contractile activity. Despite a similar decrease in ATP in the normal soleus and the epitrochlearis from beta-GPA-fed rats, the increase in IMP was only approximately 30% as great in the soleus in response to intense contractile activity. These results demonstrate that the accumulation of less IMP in slow- compared with fast-twitch skeletal muscle during contractile activity is not due to the lower level of AMP deaminase in slow-twitch muscle.  相似文献   

10.
The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.  相似文献   

11.
The interaction of polyphosphoinositols with AMP deaminase   总被引:1,自引:0,他引:1  
Polyphosphoinositols coupled to epoxy-activated Sepharose retained chicken liver AMP deaminase in a similar manner as phosphocellulose. After elution from polyphosphoinositol-Sepharose, in contrast to inositol-Sepharose and phosphocellulose, low Km AMP deaminase from the chicken liver exhibited markedly elevated S0.5 value. Several commercially available polyphosphoinositols were tested with rat liver AMP deaminase and only 1,3,4,5 IP4 was found to stimulate the enzyme. This is the first report on the effect of naturally occurring polyphosphoinositol derivative on the soluble enzyme.  相似文献   

12.
13.
14.
15.
The interaction of rabbit skeletal muscle adenylate deaminase with myosin fragments (heavy meromyosin and subfragment-2) has been studied by analytical centrifugation, gel chromatography, and stopped flow light scattering. Formation of the complex is highly cooperative with respect to addition of two molecules of adenylate deaminase/molecule of myosin fragment to form a ternary complex. Ternary complex formation is also highly pH-dependent with less complex formed at higher pH values, and the pH dependence is steeper with heavy meromyosin than with subfragment-2. At pH 6.5, the dissociation constant for the heavy meromyosin-deaminase complex is approximately 1.2 X 10(-15) M2. Over the pH range 6.5-7.0, rate constants for the formation and dissociation of both the ternary and binary complexes of adenylate deaminase with heavy meromyosin have been determined. From analysis of the time course of stopped flow light scattering, the association steps are found to be extremely rapid, while the rate constant for dissociation of the first molecule of adenylate deaminase from the ternary complex is quite slow. This rate constant increases as the pH increased, but is sufficiently low that the interacting system does not equilibrate on the time scale of mass transport experiments (sedimentation velocity and gel chromatography), and thus displays apparent "slow" behavior. The kinetic regulatory properties of adenylate deaminase are influenced by heavy meromyosin and subfragment-2, particularly with respect to inhibition by GTP. The association and dissociation of adenylate deaminase and myosin fragments and the resultant changes in kinetic properties of the adenylate deaminase can markedly alter the time course of the enzymatic reaction. The time scale over which this interaction is modulated by changes in pH may have significance in the metabolism of exercising muscle.  相似文献   

16.
1. Rat skeletal muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) at optimal KCl concentrations shows a biphasic response to increasing levels of the allosteric inhibitor ATP. 2. Up to 10 micrometer, ATP appears to convert the enzyme to a form exhibiting sigmoidal kinetics while at higher concentrations its inhibitory effect is manifested by an alteration of AMP binding to AMP deaminase indicative of negative homotropic cooperativity at about 50% saturation. 3. AMP deaminase is inactivated by incubation with the periodate oxidation product of ATP. The (oxidized ATP)--AMP deaminase complex stabilized by NaBH4 reduction shows kinetic properties similar to those of the native enzyme in the presence of high ATP concentrations. 4. A plausible explanation of the observed cooperativity is that ATP induces different conformational state of AMP deaminase subunits, causing the substrate to follow a sequential mechanism of binding to enzyme. 5. Binding of the radioactive oxidized ATP shows that 3.2 mol of this reagent bind per mol AMP deaminase.  相似文献   

17.
18.
The kinetic and regulatory properties of purified rat heart AMP deaminase were investigated. In the presence of 100 mM KCl, the enzyme exhibited a slightly sigmoid-shaped plot of reaction rate, vs. substrate concentration, which shifted to a more hyperbolic form when ATP, ADP or GTP were added. ATP was the most potent activator of the enzyme, whereas GTP at low (less than 0.25 mM) concentrations increased the enzyme activity. The activation effect was negligible at higher concentrations of GTP. The calculated value of K0.5 of approx. 3 mM for unactivated enzyme decrased to approx. 0.6 mM and 1.1 mM when 0.5 mM ATP or 1.5 mM ADP were present in the incubation mixture, respectively. The theoretical model (Monod, J., Wyman, J. and Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118) gave a partial explanation of these results.  相似文献   

19.
Chromatography on phosphocellulose revealed the presence of two, kinetically different forms of human heart AMP deaminase. The main portion of the activity eluted from the column at about 1.1 M KCl, and the enzyme present in this eluate manifested a sigmoidal type of substrate saturation kinetics. The results from gel filtration indicate that human heart AMP deaminase is a tetrameric protein capable of aggregating in more complex active structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号