首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a small-scale polymerization of high molecular weight methyl methacrylate/n-butyl acrylate (MMA/n-BA) colloidal particles that are synthesized in an aqueous environment in the presence of phospholipid hydrogenated soybean phosphatidylcholine (HSPC) molecules that also serve as the particle stabilizing agents. When such particles coalesce to form polymeric films, they release phospholipids, which, in turn, form organized structures near the film-air (F-A) interface. Diffusion and mobility of phospholipid molecules are affected not only by their compatibility with colloidal particles but also by electrolyte environments of colloidal dispersions. When Na(+), K(+), and Ca(2+) counterions are added to MMA/n-BA aqueous colloidal dispersions stabilized with HSPC, and such films are coalesced, different degrees of diffusion of HSPC to the F-A interface exist, depending on the counterion, and conformational changes of HSPC result. For example, in the presence of Ca(2+), HSPC molecules collapse entropically to form random surface layers, as opposed to smaller Na(+) and K(+), which force amphiphilic HSPC ends to align preferentially parallel to the film surface. These studies show that it is possible to design stimuli-response colloidal systems triggered by chemical environments of active molecules on colloidal polymer particles.  相似文献   

2.
Air/water interface films were obtained from human erythrocytes and rabbit sarcoplasmic reticulum membranes at 'zero surface pressure. according to Verger, R and Pattus, F. (Chem. Phys. Lipids (1976) 16, 285-291). The lipid and protein distribution of these membrane films suggest that the film composition is determined by the composition of the membrane and the mode of integration of its components. When kept at low surface pressure, slow film expansion occurred due to unfolding of proteins at the interface. This process can be stopped by compressing the films at a higher surface pressure than 15 dyn/cm. Acetylcholinesterase activity from human erythrocyte films is highly dependent on the condensation state of the film. Ca2+-ATPase from sarcoplasmic reticulum films was still activable by Ca2+. Freeze-fracture studies on erythrocyte membrane films suggest the such films are monolayers in which proteins are randomly distributed.  相似文献   

3.
Air/water interface films were obtained from human erythrocytes and rabbit sarcoplasmic reticulum membranes at 'zero surface pressure, according to Verger, R. and Pattus, F. (Chem. Phys. Lipids (1976) 16, 285–291). The lipid and protein distribution of these membrane films suggest that the film composition is determined by the composition of the membrane and the mode of integration of its components. When kept at low surface pressure, slow film expansion occured due to unfolding of proteins at the interface. This process can be stopped by compressing the films at a higher surface pressure than 15 dyn/cm. Acetylcholinesterase activity from human erythrocyte films is highly dependent on the condensation state of the film. Ca2+-ATPase from sarcoplasmic reticulum films was still activable by Ca2+. Freeze-fracture studies on erythrocyte membrane films suggest that such films are monolayers in which proteins are randomly distributed.  相似文献   

4.
Shen L  Hu N 《Biomacromolecules》2005,6(3):1475-1483
A novel thin film of heme proteins, including hemoglobin (Hb), myoglobin (Mb), and catalase (Cat), was successfully assembled layer by layer with polyamidoamine (PAMAM) dendrimers on different solid surfaces. At pH 7.0, protonated PAMAM possesses positive surface charges, whereas the proteins have net negative surface charges at pH above their isoelectric points. Thus, layer-by-layer {PAMAM/protein}(n)() films were assembled with alternate adsorption of oppositely charged PAMAM and proteins from their aqueous solutions mainly by electrostatic interaction. The assembly process was monitored by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). The growth of the protein multilayer films was regular and linear, whereas the electroactivity of the films was only extended to a few bilayers. CVs of {PAMAM/protein}(n)() films showed a pair of well-defined and nearly reversible peaks characteristic of the protein heme Fe(III)/Fe(II) redox couples. Although {PAMAM/Hb}(n)() and {PAMAM/Mb}(n)() films showed very similar properties, {PAMAM/Cat}(n)() films displayed different and unique characters. The substrates with biological or environmental significance, such as oxygen, hydrogen peroxide, trichloroacetic acid, and nitrite, were catalytically reduced at {PAMAM/protein}(n)() film electrodes, showing the potential applicability of the films as new types of biosensors or bioreactors based on direct electrochemistry of the proteins. Both the electrochemical and electrocatalytic activity of {PAMAM/protein}(n)() films can be tailored precisely by controlling the number of bilayers or the film thickness.  相似文献   

5.
Surface composition and morphology of starch,amylose, and amylopectin films   总被引:1,自引:0,他引:1  
The surfaces of solution-cast films of starch, amylose, and amylopectin were examined with scanning electron microscopy (SEM), atomic force microscopy (AFM), electron spectroscopy for chemical analysis (ESCA), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface topography visualized by SEM showed that amylopectin films were very smooth whereas amylose and starch films were rougher. It appears that crystallinity or phase separation in the bulk of the film affects the surface topography. AFM showed that the outmost surfaces of all films were covered with small protrusions, 15-35 nm wide and 1-4 nm high. Studies with ESCA revealed the presence of 3-8% nitrogen on the surfaces. ToF-SIMS indicated that the nitrogen originates from protein because ionic fragments from amino acids and the peptide backbone were found. Extracts from the top surface layer of the starch film showed protein bands in gel electrophoresis (SDS-PAGE) around 60 kDa, which is in the same molecular weight range as the biosynthesizing enzyme GBSS I present in starch granules. The proteins apparently phase separated during film formation and migrated to the surface, resulting in an extensive enrichment of proteins in the film surface, where about 8% of the protein is present in the top 0.01% of the film. We believe that the protrusions observed with AFM could be one or a few proteins aggregated side by side.  相似文献   

6.
Although the use of sugar and sugar derivatives has been documented in polymer research for many years, there are no reports that would utilize these species as polymerization sites of colloidal polymeric particles that, later on, may be released during particle coalescence to form films with surfaces that differentiate protein adsorption. These studies show that, when n-dodecyl-beta-D-maltoside (DDM) is utilized for the synthesis and stabilization of poly[methyl methacrylate-co-(n-butyl acrylate)] (p-MMA/nBA) colloidal particles, upon particle coalescence DDM stratifies near the film-air (F-A) interface. By using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and internal reflection infrared imaging (IRIRI), comparative adsorption studies on p-MMA/nBA surfaces exposed to globulin (Glo), fibrinogen (Fib), and bovine serum albumin (BSA) reveal that the presence of DDM selectively inhibits Glo and Fib adsorption, but does not affect BSA. The presence of DDM also enhances the rate of mobility of sodium dioctylsulfosuccinate (SDOSS) resulting from interactions between DDM and SDOSS moieties, and the surface morphologies change as a result of concentration variations of DDM in the colloidal dispersions.  相似文献   

7.
The role of surfactant proteins in DPPC enrichment of surface films   总被引:2,自引:0,他引:2       下载免费PDF全文
A pressure-driven captive bubble surfactometer was used to determine the role of surfactant proteins in refinement of the surface film. The advantage of this apparatus is that surface films can be spread at the interface of an air bubble with a different lipid/protein composition than the subphase vesicles. Using different combinations of subphase vesicles and spread surface films a clear correlation between dipalmitoylphosphatidylcholine (DPPC) content and minimum surface tension was observed. Spread phospholipid films containing 50% DPPC over a subphase containing 50% DPPC vesicles did not form stable surface films with a low minimum surface tension. Addition of surfactant protein B (SP-B) to the surface film led to a progressive decrease in minimum surface tension toward 1 mN/m upon cycling, indicating an enrichment in DPPC. Surfactant protein C (SP-C) had no such detectable refining effect on the film. Surfactant protein A (SP-A) had a positive effect on refinement when it was present in the subphase. However, this effect was only observed when SP-A was combined with SP-B and incubated with subphase vesicles before addition to the air bubble containing sample chamber. Comparison of spread films with adsorbed films indicated that refinement induced by SP-B occurs by selective removal of non-DPPC lipids upon cycling. SP-A, combined with SP-B, induces a selective adsorption of DPPC from subphase vesicles into the surface film. This is achieved by formation of large lipid structures which might resemble tubular myelin.  相似文献   

8.
Adsorption of the clinical lung surfactants (LS) Curosurf or Survanta from aqueous suspension to the air-water interface progresses from multi-bilayer aggregates through multilayer films to a coexistence between multilayer and monolayer domains. Exposure to environmental tobacco smoke (ETS) alters this progression as shown by Langmuir isotherms, fluorescence microscopy and atomic force microscopy (AFM). After 12 h of LS exposure to ETS, AFM images of Langmuir-Blodgett deposited films show that ETS reduces the amount of material near the interface and alters how surfactant is removed from the interface during compression. For Curosurf, ETS prevents refining of the film composition during cycling; this leads to higher minimum surface tensions. ETS also changes the morphology of the Curosurf film by reducing the size of condensed phase domains from 8-12 μm to ∼ 2 μm, suggesting a decrease in the line tension between the domains. The minimum surface tension and morphology of the Survanta film are less impacted by ETS exposure, although the amount of material associated with the film is reduced in a similar way to Curosurf. Fluorescence and mass spectra of Survanta dispersions containing native bovine SP-B treated with ETS indicate the oxidative degradation of protein aromatic amino acid residue side chains. Native bovine SP-C isolated from ETS exposed Survanta had changes in molecular mass consistent with deacylation of the lipoprotein. Fourier Transform Infrared Spectroscopy (FTIR) characterization of the hydrophobic proteins from ETS treated Survanta dispersions show significant changes in the conformation of SP-B and SP-C that correlate with the altered surface activity and morphology of the lipid-protein film.  相似文献   

9.
The effect of monoglycerides (monopalmitin and monoolein) on the structural and topographical characteristics of beta-casein adsorbed film at the air-water interface has been analyzed by means of surface pressure (pi)-area (A) isotherms and Brewster angle microscopy (BAM). At surface pressures lower than that for the beta-casein collapse (pi(c)(beta-casein)), attractive interactions between beta-casein and monoglycerides were observed. At higher surface pressures, the collapsed beta-casein is partially displaced from the interface by monoglycerides. However, beta-casein displacement by monoglycerides is not quantitative at the monoglyceride concentrations studied in this work. From the results derived from these experiments, we have concluded that interactions, miscibility, and displacement of proteins by monoglycerides in adsorbed mixed monolayers at the air-water interface depend on the particular protein-monoglyceride system, the interactions between film-forming components being higher for adsorbed than for spread films. The adsorbed films are more segregated than spread films, and both collapsed protein domains and monoglyceride domains in adsorbed films are smaller than for spread films.  相似文献   

10.
In this study the relation between the ability of protein self-association and the surface properties at air-water interfaces is investigated using a combination of spectroscopic techniques. Three forms of chicken egg ovalbumin were obtained with different self-associating behavior: native ovalbumin, heat-treated ov-albumin-being a cluster of 12-16 predominantly noncovalently bound proteins, and succinylated ovalbumin, as a form with diminished aggregation properties due to increased electrostatic repulsion. While the bulk diffusion of aggregated protein is clearly slower compared to monomeric protein, the efficiency of transport to the interface is increased, just like the efficiency of sticking to rather than bouncing from the interface. On a timescale of hours, the aggregated protein dissociates and adopts a conformation comparable to that of native protein adsorbed to the interface. The exerted surface pressure is higher for aggregated material, most probably because the deformability of the particle is smaller. Aggregated protein has a lower ability to desorb from the interface upon compression of the surface layer, resulting in a steadily increasing surface pressure upon reducing the available area for the surface layer. This observation is opposite to what is observed for succinylated protein that may desorb more easily and thereby suppresses the buildup of a surface pressure. Generally, this work demonstrates that modulating the ability of proteins to self-associate offers a tool to control the rheological properties of interfaces.  相似文献   

11.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

12.
Hydrophobins are amphiphilic proteins produced by filamentous fungi. They function in a variety of roles that involve interfacial interactions, as in growth through the air-water interface, adhesion to surfaces, and formation of coatings on various fungal structures. In this work, we have studied the formation of films of the class II hydrophobin HFBI from Trichoderma reesei at the air-water interface. Analysis of hydrophobin aqueous solution drops showed that a protein film is formed at the air-water interface. This elastic film was clearly visible, and it appeared to cause the drops to take unusual shapes. Because adhesion and formation of coatings are important biological functions for hydrophobins, a closer structural analysis of the film was made. The method involved picking up the surface film onto a solid substrate and imaging the surface by atomic force microscopy. High-resolution images were obtained showing both the hydrophilic and hydrophobic sides of the film at nanometer resolution. It was found that the hydrophobin film had a highly ordered structure. To study the orientation of molecules and to obtain further insight in film formation, we made variants of HFBI that could be site specifically conjugated. We then used the avidin-biotin interaction as a probe. On the basis of this work, we suggest that the unusual interfacial properties of this type of hydrophobins are due to specific molecular interactions which lead to an ordered network of proteins in the surface films that have a thickness of only one molecule. The interactions between the proteins in the network are likely to be responsible for the unusual surface elasticity of the hydrophobin film.  相似文献   

13.
Summary Interface films of purple membrane and lipid containing spectroscopically intact and oriented bacteriorhodopsin have been used as a model system to study the function of this protein. Small positive charges in surface potential (<1 mV) are detected upon illumination of these films at the air-water interface. These photopotentials, are not affected by overlaying the interface film with a thin layer (0.3 mm) of decane. However, they are dramatically increased when lipid soluble proton carriers FCCP or DNP are added to the decane. The polarity of the photopotential indicates that, in the light, positive charges are transported through the interface from the aqueous to the organic phase. The action spectrum of the photopotential is identical to the absorption spectrum of bacteriorhodopsin. Since bacteriorhodopsin molecules are oriented with their intracellular surface towards the aqueous subphase, the characteristics of the photopotential indicate that in the light bacteriorhodopsin translocates protons from its intracellular to its extracellular surface. The kinetics of the photopotential reveal that the rate and extent of proton transport are proportional both to the fraction of bacteriorhodopsin molecules excited and to the concentration of proton acceptor. The photopotentials result from changes in the ionic distribution across the decane-water interface and can be cancelled by lipid soluble anions.  相似文献   

14.
BACKGROUND: Surface bound proteins on colloid particles are widely used in biotechnological applications such as diagnostics or separation. Analysis of colloid surfaces by imaging methods provides information on the structure of these protein films, and an understanding of the functional relationships of biomolecules immobilised on solid surfaces. METHODS: In order to visualise protein molecules organised in films on surfaces of nano-sized gold-particles, an electron-microscopic approach based on the scattering absorption contrast of the specimen was applied. RESULTS: Analysing protein conjugated gold particles with a transmission electron microscope, protein films on gold particle surfaces cause a significant scattering absorption contrast based on the materials' electron density. Thus, the thickness of such films becomes directly measurable in planar projection and the shape of these films are visualised without negative staining methods. The insertion of Ruthenium-labelled antibodies instead of non-labelled antibodies as a marker with increased electron-density in these films yields a contrast enhancement of the whole film. Additional labelling with anti-Mouse IgG Gold conjugates localises the position of the surface bound antibodies in such protein films. CONCLUSIONS: The power of transmission electron microscopy to resolve protein-films on colloid surfaces without staining or labelling as a sample preparation procedure has been demonstrated. Thus, this direct method provides an analytical tool for studying protein films and their structural features on particle surfaces.  相似文献   

15.
Solvent solubilized myelin membranes spread as monomolecular layers at the air-water interface show a heterogeneous pattern at all surface pressures. In order to asses the role of myelin protein and lipid components in the surface structuring we compared the topography, as seen by Brewster angle microscopy (BAM) and epifluorescence microscopy, of monolayers made from mixtures containing all myelin lipids (except gangliosides) and variable proportions of Folch-Lees proteolipid protein (PLP, the major protein component of myelin). The presence of the single PLP, in the absence of the other myelin proteins, can reproduce the surface pattern of the whole myelin extract films in a concentration-dependant manner. Moreover, a threshold mole fraction of PLP is necessary to induce the lipid-protein component reorganization leading to the appearance of a rigid (gray) phase, acting as a surface skeleton, at low surface pressures and of fractal clusters at high surface pressures. The average size of those clusters is also dependent on the PLP content in the monolayer and on the time elapsed from the moment of film spreading, as they apparently result from an irreversible lateral aggregation process. The transverse rearrangement of the monolayer occurring under compression was different in films with the highest and lowest PLP mole fractions tested.  相似文献   

16.
The state of photosystem II core complex (PS II CC) in monolayer at the gas-water interface was investigated using in situ polarization-modulated infrared reflection absorption spectroscopy and x-ray reflectivity techniques. Two approaches for preparing and manipulating the monolayers were examined and compared. In the first, PS II CC was compressed immediately after spreading at an initial surface pressure of 5.7 mN/m, whereas in the second, the monolayer was incubated for 30 min at an initial surface pressure of 0.6 mN/m before compression. In the first approach, the protein complex maintained its native alpha-helical conformation upon compression, and the secondary structure of PS II CC was found to be stable for 2 h. The second approach resulted in films showing stable surface pressure below 30 mN/m and the presence of large amounts of beta-sheets, which indicated denaturation of PS II CC. Above 30 mN/m, those films suffered surface pressure instability, which had to be compensated by continuous compression. This instability was correlated with the formation of new alpha-helices in the film. Measurements at 4 degreesC strongly reduced denaturation of PS II CC. The x-ray reflectivity studies indicated that the spread film consists of a single protein layer at the gas-water interface. Altogether, this study provides direct structural and molecular information on membrane proteins when spread in monolayers at the gas-water interface.  相似文献   

17.
Solvent solubilized myelin membranes spread as monomolecular layers at the air-water interface show a heterogeneous pattern at all surface pressures. In order to asses the role of myelin protein and lipid components in the surface structuring we compared the topography, as seen by Brewster angle microscopy (BAM) and epifluorescence microscopy, of monolayers made from mixtures containing all myelin lipids (except gangliosides) and variable proportions of Folch-Lees proteolipid protein (PLP, the major protein component of myelin). The presence of the single PLP, in the absence of the other myelin proteins, can reproduce the surface pattern of the whole myelin extract films in a concentration-dependant manner. Moreover, a threshold mole fraction of PLP is necessary to induce the lipid-protein component reorganization leading to the appearance of a rigid (gray) phase, acting as a surface skeleton, at low surface pressures and of fractal clusters at high surface pressures. The average size of those clusters is also dependent on the PLP content in the monolayer and on the time elapsed from the moment of film spreading, as they apparently result from an irreversible lateral aggregation process. The transverse rearrangement of the monolayer occurring under compression was different in films with the highest and lowest PLP mole fractions tested.  相似文献   

18.
In this paper, we describe the preparation and characterization of Langmuir and Langmuir-Blodgett (LB) monolayers of the enzyme organophosphorus acid anhydrolase (OPAA). Langmuir films of OPAA were characterized on different subphases, such as phosphate, ammonium carbonate, and bis-tris-propane buffers. Monolayers at the air-water interface were characterized by measuring the surface pressure and surface potential-area isotherms. In situ UV-vis absorption spectra were also recorded from the Langmuir monolayers. The enzyme activity at the air-water interface was tested by the addition of diisopropylfluorophosphate (DFP) to the subphase. LB films of OPAA were transferred to mica substrates to be studied by atomic force microscopy. Finally, a one-layer LB film of OPAA labeled with a fluorescent probe, fluorescein isothiocyanate (FITC), was deposited onto a quartz slide to be tested as sensor for DFP. The clear, pronounced response and the stability of the LB film as a DFP sensor show the potential of this system as a biosensor.  相似文献   

19.
Theoretical and experimental studies of thin liquid films show that, under certain conditions, the film thickness can undergo a sudden transition which gives a stable narrower film or ends in film rupture at spatially periodic points. Theoretical analysis have also indicated that similar transitions might arise in the thin aqueous layer separating interacting membranes. Experiments described here show spatially periodic intermembrane contact points and suggest that spontaneous rapid growth of fluctuations can occur on an intermembrane water layer. Normal and pronase pretreated erythrocytes were exposed to 2% Dextran (450,000 Mr) and the resultant aggregates were examined by light and transmission electron microscopy. Cell electrophoresis measurements were used as an index of pronase modification of the glycocalyx. Erythrocytes exposed to dextran revealed a uniform intercellular separation of parallel membranes. This equilibrium between attractive and repulsive intermembrane forces is consistent with the established Derjaguin, Landau, Verwey, Overbeek (DLVO) model for colloidal particle interaction. In contrast to the above uniform separation a spatial pattern of discrete contact regions was observed in cells coming together in dextran following pronase pretreatment. The lateral contact separation distance was 3.0 microns for mild pronase pretreatment and decreased to 0.85 micron for more extensive pronase pretreatments. The system examined here is seen as a useful experimental model in which to study the principles involved in producing either uniform separation or point contacts between interacting membranes.  相似文献   

20.
Lestage DJ  Yu M  Urban MW 《Biomacromolecules》2005,6(3):1561-1572
Methyl methacrylate (MMA) and n-butyl acrylate (nBA) were copolymerized into stable colloidal particles in the presence of micelle forming sodium dioctyl sulfosuccinate (SDOSS) and liposome forming 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) in aqueous media that serve as thermodynamically stable loci for lipophilic monomers and nanostructured templates. These studies show for the first time that hollow colloidal particles may coalesce to form polymeric films and the combination of SDOSS and DLPC dispersing agents provides a stimuli-responsive environment during film formation through which individual surface stabilizing components can be driven to the film-air (F-A) or film-substrate (F-S) interface. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) of p-MMA/nBA colloidal dispersions revealed preferential and enhanced mobility of SDOSS and DLPC lipid rafts to the F-A and F-S interfaces in response to thermal, ionic, and enzymatic stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号