首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A series of novel bioreducible poly(amido amine)s containing multiple disulfide linkages (SS-PAAs) were synthesized and evaluated as nonviral gene vectors. These linear SS-PAAs could be easily obtained by Michael-type polyaddition of various primary amines to the disulfide-containing cystamine bisacrylamide. The SS-PAA polymers are relatively stable in medium mimicking physiological conditions (pH 7.4, 150 mM PBS, 37 degrees C), but are rapidly degraded in the presence of 2.5 mM DTT, mimicking the intracellular reductive environment (pH 7.4, [R-SH] = 5 mM, 37 degrees C). The polymers efficiently condense DNA into nanoscaled (<200 nm) and positively charged (>+20 mV) polyplexes that are stable under neutral conditions but are rapidly destabilized in a reductive environment, as was revealed by both dynamic light scatting measurement and agarose gel assays. Moreover, most of the poly(amido amine)s possess buffer capacities in the pH range pH 7.4-5.1 that are even higher than polyethylenimine (pEI), a property that may favorably contribute to the endosomal escape of the polyplexes. Polyplexes of four of the seven SS-PAAs studied were able to transfect COS-7 cells in vitro with transfection efficiencies significantly higher than those of branched pEI, being one of the most effective polymeric gene carriers reported to date. Importantly, also in the presence of serum, a high level of gene expression could be observed when the incubation time was elongated from 1 h to 4 h. XTT assays showed that SS-PAAs and their polyplexes possess essentially no or only very low cytotoxicity at concentrations where the highest transfection activity is observed. The results indicate that bioreducible poly(amido amine)s have excellent properties for the development of highly potent and nontoxic polymeric gene carriers.  相似文献   

2.
Brushed polymers composed of a backbone of poly(hydroxyethyl methacrylate) (pHEMA) onto which poly(2-(dimethylamino)ethyl methacrylate)s (pDMAEMAs) was grafted via a hydrolyzable linker were synthesized and evaluated as nonviral gene delivery vectors. Both pDMAEMA and pHEMA polymers with controlled molecular weights and narrow distributions were synthesized by controlled atom transfer radical polymerization (ATRP). The azide initiator was used to ensure complete and monoazide functionalization of the pDMAEMA polymer chains. Click reaction between pHEMA with alkyne side groups and the azide end group in the pDMAEMA resulted in a high-molecular-weight polymer composed of low-molecular-weight constituents via an easily degradable carbonate ester linker. The length of the pDMAEMA grafts as well as the number of grafts of the brushed pHEMA-pDMAEMA can be easily varied. At physiological conditions (pH 7.4 and 37 degrees C), the brushed polymer degraded by hydrolysis of the carbonate ester with a half-life of 96 h. The molecular weights of the formed degradation products was very close to that of the starting pDMAEMA, which is likely below the renal excretion limit (<30 kDa). It was shown that the degradable brushed pHEMA-pDMAEMAs were able to condense plasmid DNA into positively charged nanosized particles. The resulting polyplexes were able to transfect cells efficiently in the presence of the endosomal membrane disrupting INF-7 peptide, and all these degradable polymers showed lower cellular toxicity compared to a high-molecular-weight pDMAEMA reference. On the other hand, the low-molecular-weight pDMAEMA used for the grafting to pHEMA was neither able to condense the structure of DNA nor able to transfect cells. This study demonstrates that grafting a low-molecular-weight cationic polymer via a hydrolyzable linker to a neutral hydrophilic polymer is an effective approach to modulate the transfection activity and toxicity profile of gene delivery polymers.  相似文献   

3.
Two types of acid-degradable nonviral gene carriers, OEI-MK and OEI-BAA, were synthesized by polymerizing oligoethylenimine of 800 Da (OEI800) with the pH-sensitive acetone ketal cross-linker 2,2-bis(N-maleimidoethyloxy) propane (MK) or the 4-methoxybenzaldehyde bisacrylate acetal cross-linker 1,1-bis-(2-acryloyloxy ethoxy)-[4-methoxy-phenyl]methane) (BAA). Corresponding acid-insensitive counterparts (OEI-BM and LT-OEI-HD) were synthesized as well, representing control polymers. Kinetics of hydrolysis were measured and confirmed the pH-dependent degradation profile of the acetal functions, with short half-lives of 3 min at pH 5.0, and 5 h (OEI-MK) or 3.5 h (OEI-BAA) at physiological pH 7.4 and 37 degrees C. DNA polyplexes of a luciferase expression plasmid were tested for gene transfer efficiency and biocompatibility in two cell lines (B16F10 and Neuro2A). Polyplexes with acid-labile polymers showed an improved toxicity profile compared to those made with acid-stable polymer analogues. At low cation/plasmid (c/p) w/w ratios the transfection efficiency of pH-sensitive polymers was slightly reduced, but it became similar or superior to the efficiency of acid-stable polymers at higher c/p ratios. An improved in vivo biocompatibility of the acid-degradable polymers over the stable control polymers was confirmed by liver histology after systemic administration of polymers in Balb/c mice.  相似文献   

4.
p-Piperazinobenzaldehyde methoxy poly(ethylene glycol) (mPEG, 5 kDa) acetal was synthesized by the Buchwald-Hartwig coupling reaction from piperazine and p-bromobenzaldehyde mPEG acetal. Introduction of a maleimide moiety yielded a novel acetal-based PEGylation reagent (PEG-acetal-MAL) for pH-sensitive conjugation of PEG to thiol-functionalized biomolecules. For reversible shielding of polyplexes, PEG-acetal-MAL was conjugated to polyethylenimine (PEI). At 37 degrees C, the PEG-acetal-PEI conjugate had a half-life of 3 min at endosomal pH 5.5 and 2 h at physiological pH 7.4, respectively. PEI polyplexes containing PEG-acetal-PEI had a zeta potential of +3 mV and were stable to salt-induced aggregation for 2 h at pH 7.4. In contrast, at endosomal pH, the particles were deshielded and aggregated within 0.5 h. Epidermal growth factor or transferrin receptor-targeted polyplexes shielded with the pH-sensitive PEG-acetal mediated enhanced luciferase gene expression in receptor-expressing target cells (Renca-EGFR or K562) as compared to stably shielded control polyplexes. Thus, the novel PEG-acetal-MAL reagent may present a versatile tool for drug and gene delivery formulations when pH-sensitive PEGylation is preferred.  相似文献   

5.
Guo BL  Gao QY 《Carbohydrate research》2007,342(16):2416-2422
Thermo- and pH-responsive semi-IPN polyampholyte hydrogels were prepared by using carboxymethylchitosan and poly(N-isopropylacrylamide) with N,N'-methylenebisacrylamide (BIS) as the crosslinking agent. The swelling characteristics of these hydrogels at distinct compositions as a function of pH and temperature were investigated. It was found that the semi-IPN hydrogels demonstrated the pH- and temperature-responsive nature of the materials, and it also showed good reversibility. The study on the release of coenzyme A (CoA) showed that within 24h the cumulative release ratio of CoA was 22.6% in pH 2.1 solution and 89.1% in pH 7.4 solution at 37 degrees C, respectively. The release rate of CoA was higher at 37 degrees C than 25 degrees C in a pH 7.4 buffer solution. An increased release rate of CoA was observed with the content of carboxymethylchitosan increasing in the hydrogel at 25 degrees C in pH 7.4 solution. These results show that semi-IPN hydrogel seems to be of great promise in pH-temperature oral drug delivery systems.  相似文献   

6.
Wang Y  Zhang R  Xu N  Du FS  Wang YL  Tan YX  Ji SP  Liang DH  Li ZC 《Biomacromolecules》2011,12(1):66-74
Linear reduction-degradable cationic polymers with different secondary amine densities (S2 and S3) and their nonreducible counterparts (C2 and C3) were synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) step-growth polymerization of the dialkyne-oligoamine monomers and the diazide monomers. These polymers were studied with a goal of developing a set of new gene carriers. The buffering capacity and DNA binding ability of these polymers were evaluated by acid-base titration, gel retardation, and ethidium bromide (EB) exclusion assay. The polymers with lower amine density exhibit a weaker DNA-binding ability but a stronger buffering capacity in the range of pH 5.1 and 7.4. Particle size and zeta-potential measurements demonstrate that the polymers with higher amine density condense pDNA to form polyplexes with smaller sizes, while the disulfide bond in the backbone shows a negative effect on the condensing capability of the polymers, resulting in the formation of polyplexes with large size and nearly neutral surface. The reduction-sensitive polyplexes formed by polymer S2 or S3 can be disrupted by dithiothreitol (DTT) to release free DNA, which has been proven by the combination of gel retardation, EB exclusion assay, particles sizing, and zeta potential measurements. Cell viability measurements by MTT assay demonstrate that the reduction-degradable polymers (S2 and S3) have little cytotoxicity while the nonreducible polymers (C2 and C3) show obvious cytotoxicity, in particular, at high N/P ratios. In vitro transfection efficiencies of these polymers were evaluated using EGFP and luciferase plasmids as the reporter genes. Polymers S3 and S2 show much higher efficiencies than the nonreducible polymers C3 and C2 in the absence of 10% serum; unexpectedly, the lowest transfection efficiency has been observed for polymer S3 in the presence of serum.  相似文献   

7.
A new polyethylenimine (PEI)-derived biodegradable polymer was synthesized as a nonviral gene carrier. Branches of PEI were ketalized, and capabilities of nucleic acid condensation and delivery efficiency of the modified polymers were compared with ones of unketalized PEI. Ketalized PEI was able to efficiently compact both plasmid DNA and siRNA into nucleic acids/ketalized PEI polyplexes with a range of 80-200 nm in diameter. Nucleic acids were efficiently dissociated from the polyplexes made of ketalized PEI upon hydrolysis. In vitro study also demonstrated that ketalization enhanced transfection efficiency of the polyplexes while reducing cytotoxicity, even at high N/ P ratios. Interestingly, transfection efficiency was found to be inversely proportional to molecular weights of ketalized PEI, while RNA interference was observed in the opposite way. This study implies that selective delivery of plasmid DNA and siRNA to the nucleus and the cytoplasm can be achieved by tailoring the structures of polymeric gene carriers.  相似文献   

8.
A new degradable hydroxamate linkage for pH-controlled drug delivery   总被引:1,自引:0,他引:1  
A new drug delivery system based on a hydrodegradable hydroxamate linkage was evaluated. The carrier support system was poly(N-hydroxyacrylamide), which was synthesized via free radical polymerization of acryloyl chloride in 1,4-dioxane, initiated with 2,2'-azobisisobutyronitrile. The poly(acryloyl chloride) was modified in two steps. First, N-hydroxysuccinimide was added to give the imide ester of poly(acryloyl). In the second step, the imide ester of poly(acryloyl) was reacted with either hydroxylamine or N-methylhydroxylamine to give the corresponding hydroxamic acid. The hydroxamide functionality was then used to link the model drug ketoprofen. All products and intermediates were characterized by elemental analysis and FTIR and 1H NMR spectra. In vitro drug release was performed under specific conditions to elucidate the influence of the pH, polymer microstructure, and temperature on the hydrolysis rate of the amido-ester bond that linked the drug to the macromolecule. The drug release rate from N-methylhydroxamic acid polymers was faster than from hydroxamic acid polymers. All polymers showed higher rates of drug release at higher pH values (9.0 > 7.4 > 2.0) and at higher temperatures (37 degrees C > 20 degrees C).  相似文献   

9.
Novel, multifunctional polymers remain an attractive objective for drug delivery, especially for hydrophilic macromolecular drugs candidates such as peptides, proteins, RNA, and DNA. To facilitate intracellular delivery of DNA, new amine-modified poly(vinyl alcohol)s (PVAs) were synthesized by a two-step process using carbonyl diimidazole activated diamines to produce PVAs with different degrees of amine substitution. The resulting polymers were characterized using NMR, thermogravimetric analysis (TGA), and gelpermation chromatography (GPC). Atomic force microscopy (AFM), dynamic light scattering photon correlation spectroscopy (PCS), and zeta-potential were used to investigate polyplexes of DNA with PVA copolymers. These studies suggest an influence of the polycation structure on the morphology of condensed DNA in polyplexes. Significant differences were observed by changing both the degrees of amine substitution and the structure of the PVA backbone, demonstrating that both electrostatic and hydrophobic interactions affect DNA condensation. DNA condensation measured by an ethidium bromide intercalation assay showed a higher degree of condensation with pDNA with increasing degrees of amine substitution and more hydrophobic functional groups. These findings are in line with transfection experiments, in which a good uptake of these polymer DNA complexes was noted, unfortunately, with little endosomal escape. Co-administration of chloroquine resulted in increased endosomal escape and higher transfection efficiencies, due to disruption of the endosomal membrane. In this study, the structural requirements for DNA complexation and condensation were characterized to provide a basis for rational design of nonviral gene delivery systems.  相似文献   

10.
One of the crucial steps in gene delivery with cationic polymers is the escape of the polymer/DNA complexes ("polyplexes") from the endosome. A possible way to enhance endosomal escape is the use of cationic polymers with a pKa around or slightly below physiological pH ("proton sponge"). We synthesized a new polymer with two tertiary amine groups in each monomeric unit [poly(2-methyl-acrylic acid 2-[(2-(dimethylamino)-ethyl)-methyl-amino]-ethyl ester), abbreviated as pDAMA]. One pKa of the monomer is approximately 9, providing cationic charge at physiological pH, and thus DNA binding properties, the other is approximately 5 and provides endosomal buffering capacity. Using dynamic light scattering and zeta potential measurements, it was shown that pDAMA is able to condense DNA in small particles with a surface charge depending on the polymer/DNA ratio. pDAMA has a substantial lower toxicity than other polymeric transfectants, but in vitro, the transfection activity of the pDAMA-based polyplexes was very low. The addition of a membrane disruptive peptide to pDAMA-based polyplexes considerably increased the transfection efficiency without adversely affecting the cytotoxicity of the system. This indicates that the pDAMA-based polyplexes alone are not able to mediate escape from the endosomes via the proton sponge mechanism. Our observations imply that the proton sponge hypothesis is not generally applicable for polymers with buffering capacity at low pH and gives rise to a reconsideration of this hypothesis.  相似文献   

11.
7-Alkylguanosine and 7-alkyldeoxyguanosine were prepared from phosphoramide mustard and nitrogen mustard in nonaqueous conditions. The guanosine products were N-(2-chloroethyl)-N-[2-(7-guanosinyl)ethyl] phosphorodiamidic acid, and N-(2-chloroethyl)-N-[2-(7-guanosinyl)ethyl]methylamine, respectively. These were also formed in aqueous reactions but they rapidly underwent secondary reactions. The half-life of the phosphoramide mustard-guanosine adduct was 3.1 h (37 degrees C, pH 7.4) and that of the nitrogen mustard adduct 1 h (25 degrees C, pH 7.4), as determined by HPLC. The half-lives of the respective adducts for imidazole ring-opening were 9.5 h and 0.78 h (37 degrees C, pH 7.4). The respective deoxyguanosine derivatives depurinated with half-lives of 8.5 h and 1.6 h (25 degrees C, pH 4.2). The mustard adducts are notably more labile than simple alkyl substituted guanosines and deoxyguanosines.  相似文献   

12.
Amphiphilic graft polymers, containing oligolysine groups pendent to a hydrophobic polycyclooctene backbone, were used to form polyplexes with plasmid DNA pZsGreen1-N1. These poly(cyclooctene- graft-pentalysine) structures were found to be effective transfection reagents for COS-1 and HeLa cells. In the case of polymer 1e (average degree of polymerization of 206), protein expression levels 48 h post-transfection were found to be comparable to, or better than, commercial transfection reagents jetPEI and SuperFect. With HeLa cells, GFP expression levels were better than Lipofectamine 2000. Of particular interest was the excellent cell viability seen in experiments with polyplexes formed from the pentalysine-grafted polymers. In the example of the highest molecular weight graft copolymer, polymer 1e, cell viability relative to untreated cells was 99% with COS-1 cells and 92% with HeLa cells in contrast to the commercial reagents, which gave 67-80% with COS-1 cells and 17-52% with HeLa cells. The effectiveness of these polyolefin- graft-pentalysine structures as DNA delivery vehicles is attributed to their amphiphilic nature and branched architecture.  相似文献   

13.
Lin S  Du F  Wang Y  Ji S  Liang D  Yu L  Li Z 《Biomacromolecules》2008,9(1):109-115
Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.  相似文献   

14.
Novel biodegradable poly(disulfide amine)s with defined structure, high transfection efficiency, and low cytotoxicity were designed and synthesized as nonviral gene delivery carriers. Michael addition between N, N'-cystaminebisacrylamide (CBA) and three N-Boc protected diamines ( N-Boc-1,2-diaminoethane, N-Boc-1,4-diaminobutane, and N-Boc-1,6-diaminohexane) followed by N-Boc deprotection under acidic condition resulted in final cationic polymers with disulfide bonds, tertiary amine groups in main chains, and pendant primary amine groups in side chains. Polymer structures were confirmed by 1H NMR, and their molecular weights were in the range 3.3-4.7 kDa with narrow polydispersity (1.12-1.17) as determined by size exclusion chromatography (SEC). Acid-base titration assay showed that the poly(disulfide amine)s possessed superior buffering capacity to branched PEI 25 kDa in the pH range 7.4-5.1, which may facilitate the escape of DNA from the endosomal compartment. Gel retardation assay demonstrated that significant polyplex dissociation was observed in the presence of 5.0 mM DTT within 1 h, suggesting rapid DNA release in the reduction condition such as cytoplasm due to the cleavage of disulfide bonds. Genetic transfections mediated by these poly(disulfide amine)s were side-chain spacer length dependent. The poly(disulfide amine) with a hexaethylene spacer, poly(CBA-DAH), had comparable transfection efficiency to bPEI 25 kDa in the tested cell lines, i.e., 293T cells, Hela cells, and NIH3T3 cells. This same poly(disulfide amine) mediated 7-fold higher luciferase expression than bPEI 25 kDa in C2C12 cells (mouse myoblast cell line), a cell line difficult to transfect with many cationic polymers. Furthermore, MTT assay indicated that all three poly(disulfide amine)s/pDNA polyplexes were significantly less toxic than bPEI/pDNA complexes.  相似文献   

15.
Cationic polymers, such as poly-l-lysine (pLL) and polyethyleneimine (pEI), are receiving growing attention as vectors for gene therapy. They form polyelectrolyte complexes with DNA, resulting in a reduced size of the DNA and an enhanced stability toward nucleases. The major disadvantages of using both polymers for in vivo purposes are their cytotoxicity and, in the case of pEI, the fact that it's not biodegradable. In this work, we investigated the interaction between a series of cationic, glutamic acid based polymers and red blood cells. The MTT test was used to investigate the cytotoxicity of the complexes. The ability of the polymers to stabilize DNA toward nucleases was investigated. Transfection studies were carried out on Cos-1 cells. The results from the haemolysis studies, the haemagglutination studies, and the MTT assay show that the polymers are substantially less toxic than pLL and pEI. The polymers are able to protect the DNA from digestion by DNase I. The transfection studies show that the polymer-DNA complexes are capable of transfecting cells, most of them with poor efficiency compared to pEI-DNA complexes.  相似文献   

16.
The aim of this study was to design a thermosensitive polymeric micelle system with a relatively fast degradation time of around 1 day. These micelles are of interest for the (targeted) delivery of biologically active molecules. Therefore, N-(2-hydroxyethyl)methacrylamide-oligolactates (HEMAm-Lac(n)()) were synthesized and used as building blocks for biodegradable (block co) polymers. p(HEMAm-Lac(2)) is a thermosensitive polymer with a cloud point (CP) of 22 degrees C which could be lowered by copolymerization with HEMAm-Lac(4). The block copolymer PEG-b-((80%HEMAm-Lac(2))-(20%HEMAm-Lac(4))) self-assembled into compact spherical micelles with an average size of 80 nm above the CP of the thermosensitive block (6 degrees C). Under physiological conditions (pH 7.4; 37 degrees C), the micelles started to swell after 4 h and were fully destabilized within 8 h due to hydrolysis of the lactate side chains. Rapidly degrading thermosensitive polymeric micelles based on PEG-b-((80%HEMAm-Lac(2))-(20%HEMAm-Lac(4))) have attractive features as a (targeted) drug carrier system for therapeutic applications.  相似文献   

17.
Exposure of DNA to oxidative stress produces a variety of DNA lesions including the formamidopyrimidines, which are derived from the purines. These lesions may play important roles in carcinogenesis. We achieved the first chemical syntheses of a monomeric form of Fapy-dA (1) and oligonucleotides containing this lesion or Fapy-dG at a defined site. Monomeric Fapy-dA readily epimerized at 25 degrees C in phosphate buffer (pH 7.5). The beta-anomer was favored by a ratio of 1.33:1.0, and equilibration was achieved in less than 7 h. Deglycosylation of Fapy-dA in the monomer follows first-order kinetics from 37 to 90 degrees C. The rate constants for deglycosylation of Fapy-dA in the monomeric and oligonucleotide substrates were measured at a common temperature (55 degrees C) and found to be the same within experimental error (t(1/2) = 20.5 h). Implementation of the activation parameters measured for the deglycosylation of 1 indicates that the half-life for deglycosylation of Fapy-dA at 37 degrees C is approximately 103 h. Analysis of the rate constant for deglycosylation of Fapy-dG in an oligonucleotide, revealed that this lesion is approximately 25 times more resistant to hydrolysis than Fapy-dA at 55 degrees C. These results indicate that Fapy-dA and Fapy-dG will be sufficiently long-lived in DNA so as to warrant investigation of their genotoxicity, and both anomers will be present during this time.  相似文献   

18.

Background

Glycosylated polylysines and histidylated polylysines complexed with plasmid DNA (pDNA) were proposed to develop polymer‐based gene delivery systems. The present work has been undertaken in two steps to study the uptake and the intracellular processing of pDNA, which are still poorly understood in the polyfection pathway.

Methods and results

The kinetics of the uptake and the intracellular processing of pDNA complexed with lactosylated polylysine, histidylated polylysine or histidylated polylysine bearing lactosyl residues (polyplexes) into a CF human airway epithelial cell line were assessed by flow cytometry and confocal microscopy. Complexes formed from histidylated polylysine, even though they were less taken up by cells, show better transfection efficiency with compared with lactosylated complexes. Lactosylated polymers segregated more rapidly when compared with non‐lactosylated polymers into compartments different from those containing pDNA on internalization. Intracellular location and pH measurements indicated that polymers ended up in compartments of pH ~6.2 while pDNA reached less acidic compartments of pH ~6.6. These compartments did not contain the LAMP‐1 lysosomal marker.

Conclusions

The present study exhibits that, upon internalization, pDNA and polylysine conjugates underwent segregation with a rate depending on the polylysine substitution and polymer degradation. The better transfection efficiency of polyplexes with histidylated polylysine can be ascribed to their prolonged stability inside the endocytic vesicles that likely favored the pDNA escape in the cytosol. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

19.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

20.
The interactions between DNA and chitosans varying in fractional content of acetylated units (FA), degree of polymerization (DP), and degree of ionization were investigated by several techniques, including an ethidium bromide (EtBr) fluorescence assay, gel retardation, atomic force microscopy, and dynamic and electrophoretic light scattering. The charge density of the chitosan and the number of charges per chain were found to be the dominating factors for the structure and stability of DNA-chitosan complexes. All high molecular weight chitosans condensed DNA into physically stable polyplexes; however, the properties of the complexes were strongly dependent on FA, and thereby the charge density of chitosan. By employing fully charged oligomers of constant charge density, it was shown that the complexation of DNA and stability of the polyplexes is governed by the number of cationic residues per chain. A minimum of 6-9 positive charges appeared necessary to provide interaction strength comparable to that of polycations. In contrast, further increase in the number of charges above 9 did not increase the apparent binding affinity as judged from the EtBr displacement assay. The chitosan oligomers exhibited a pH-dependent interaction with DNA, reflecting the number of ionized amino groups. The complexation of DNA and the stability of oligomer-based polyplexes became reduced above pH 7.4. Such pH-dependent dissociation of polyplexes around the physiological pH is highly relevant in gene delivery applications and might be one of the reasons for the high transfection activity of oligomer-based polyplexes observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号