首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of proteins that play a role in neuronal differentiation was examined in central nervous system (CNS) micromass embryo cell cultures and compared to expression at comparable developmental stages in vivo. The protein product of the src proto-oncogene (pp60c-src) has been postulated to have a specific role in development because, although it is expressed in many tissues, marked increases in amount and activity of pp60c-src occur in neurons at the time of differentiation. Another protein of interest, high molecular weight neurofilament (NF) protein, is found in differentiated neurons. In the present study, changes over time in the expression of these two proteins in vitro and in vivo were examined. In the micromass cell cultures, primary cells from day 12 rat embryo CNS are plated at high density and differentiate into neurons during five days in culture. Tissues from embryos grown in vivo were assessed at 12 and 17 days post-coitum. Proteins were quantified by PAGE separation of equal amounts of total protein followed by transfer to membranes, immunoblotting, and densitometric scanning of blots. Increases in the amount of both proteins with neuronal differentiation was shown. Protein kinase activity of immunoprecipitated pp60c-src also increased in cell cultures and in embryos. Similarity in patterns of expression between in vitro and in vivo tissue samples provides further evidence that the cultures closely simulate in vivo differentiation and are a useful system for examining expression of developmental genes in vitro.Abbreviations BCIP 5-bromo-4-chloro-3-indolylphosphate p-toluidine salt - CNS central nervous system - DPBS Dulbecco's phosphate-buffered saline - GAM-AP goat anti-mouse IgG alkaline phosphatase conjugate - LB limb bud - NF high molecular weight neurofilament protein - NBT nitroblue tetrazolium chloride - SDS-PAGE polyacrylamide gel electrophoresis - PVDF polyvinylidene difluoride - RIPA radioimmunoprecipitation - TBS Tris-buffered saline - TTBS TBS with 0.05% Tween-20 Presented in part at the 1989 and 1990 Teratology Society Meetings and the 1990 Society of Toxicology Meetings.  相似文献   

2.
Neuronal plasticity can be defined as adaptive changes in structure and function of the nervous system, an obvious example of which is the capacity to remember and learn. Long-term potentiation and long-term depression are the experimental models of memory in the central nervous system (CNS), and have been frequently utilized for the analysis of the molecular mechanisms of memory formation. Extensive studies have demonstrated that various kinases and phosphatases regulate neuronal plasticity by phosphorylating and dephosphorylating proteins essential to the basic processes of adaptive changes in the CNS. These proteins include receptors, ion channels, synaptic vesicle proteins, and nuclear proteins. Multifunctional kinases (cAMP-dependent protein kinase, Ca2+/phospholipid-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinases) and phosphatases (calcineurin, protein phosphatases 1, and 2A) that specifically modulate the phosphorylation status of neuronal-signaling proteins have been shown to be required for neuronal plasticity. In general, kinases are involved in upregulation of the activity of target substrates, and phosphatases downregulate them. Although this rule is applicable in most of the cases studied, there are also a number of exceptions. A variety of regulation mechanisms via phosphorylation and dephosphorylation mediated by multiple kinases and phosphatases are discussed.  相似文献   

3.

Background  

Dab2, one of two mammalian orthologs of Drosophila Disabled, has been shown to be involved in cell positioning and formation of visceral endoderm during mouse embryogenesis, but its role in neuronal development is not yet fully understood. In this report, we have examined the localization of the Dab2 protein in the mouse embryonic central nervous system (CNS) at different developmental stages.  相似文献   

4.
Eph-related receptor tyrosine kinases (RTKs) are the largest known subfamily of RTKs, comprising at least a dozen members. Expression studies suggest roles for these genes in patterning and differentiation of the nervous system, the neural crest, developing limbs and somites. Some of the recently isolated family of ligands for Eph-related RTKs have been shown to function as positional identifiers in the retinotectal system. We have previously characterised three Eph-related RTKs in the zebrafish (rtk1-3). Here we report the identification of five new zebrafish Eph-related RTKs (rtk4, rtk5, rtk6, rtk7 and rtk8) and describe their dynamic expression patterns. Based on these expression patterns, we propose that rtk4-8 play various roles in establishing territories within the developing central nervous system (CNS) and in the subsequent differentiation of defined neuronal populations. Received: 22 November 1996 / Accepted: 3 January 1997  相似文献   

5.
Jia Luo 《生物学前沿》2012,7(3):212-220
Glycogen synthase kinase 3β (GSK3β) is a multifunctional serine/threonine kinase.It is particularly abundant in the developing central nervous system (CNS).Since GSK3β has diverse substrates ranging fr...  相似文献   

6.
It is a common and widely accepted assumption that glycine and GABA are the main inhibitory transmitters in the central nervous system (CNS). But, in the past 20 years, several studies have clearly demonstrated that these amino acids can also be excitatory in the immature central nervous system. In addition, it is now established that both GABA receptors (GABARs) and glycine receptors (GlyRs) can be located extrasynaptically and can be activated by paracrine release of endogenous agonists, such as GABA, glycine, and taurine. Recently, non-synaptic release of GABA, glycine, and taurine gained further attention with increasing evidence suggesting a developmental role of these neurotransmitters in neuronal network formation before and during synaptogenesis. This review summarizes recent knowledge about the non-synaptic activation of GABAARs and GlyRs, both in developing and adult CNS. We first present studies that reveal the functional specialization of both non-synaptic GABAARs and GlyRs and we discuss the neuronal versus non-neuronal origin of the paracrine release of GABAAR and GlyR agonists. We then discuss the proposed non-synaptic release mechanisms and/or pathways for GABA, glycine, and taurine. Finally, we summarize recent data about the various roles of non-synaptic GABAergic and glycinergic systems during the development of neuronal networks and in the adult.  相似文献   

7.
Ca2+ release from intracellular stores regulates muscle contraction and a vast array of cell functions, but its role in the central nervous system (CNS) has not been completely elucidated. A new method of blocking IP3 signaling by artificially expressing IP3 5-phosphatase has been used to clarify the functions of intracellular Ca2+ mobilization in CNS. Here I review two of such functions: the activity-dependent synaptic maintenance mechanism and the regulation of neuronal growth by spontaneous Ca2+ oscillations in astrocytes. These findings add new bases for better understanding CNS functions and suggest the presence of as yet unidentified neuronal and glial functions that are regulated by Ca2+ store-dependent Ca2+ signaling.  相似文献   

8.
The central nervous system of the shiverer mouse is known to be severely deficient in myelin. Animals heterozygous for this autosomal-recessive mutation were crossed, and the myelin proteins were examined in the brains and spinal cords of shiverers and unaffected littermates among the offspring. In the brains and spinal cords of nine of the 14 unaffected littermates examined, the quantities of the myelin basic and proteolipid proteins were lower than normal. Furthermore, in the brains of heterozygotes 33 to ~ 150 days old, the myelin basic and proteolipid proteins were reduced in amount, compared to wild-type controls; the myelin basic protein was also present in subnormal amounts in the spinal cords from heterozygous animals at the ages of 17 to 150 days. More severe reductions in the quantities of the myelin proteins were observed in central nervous system tissue from homozygous shiverer mice, and the quantity of the myelin proteolipid protein in the central nervous system of the shiverer mouse, expressed as a ratio to the control value at each age, underwent a developmental decline. In heterozygotes, as well as shiverers, the peripheral nerves were also deficient in the P1 and Pr proteins, which are the same as the basic proteins in rodent central nervous system myelin. The findings regarding heterozygotes suggest that the defective primary gene product in the shiverer mouse could be the myelin basic protein itself or a protein required for a rate-limiting step in the processing of the myelin basic protein.  相似文献   

9.
10.
The central nervous system of the pond snail, Lymnaea stagnalis, contains many large, identified neurons which can be easily manipulated making it an advantageous model system to elucidate in vivo the architecture of neuronal signal transduction pathways. We have isolated three cDNA clones encoding G protein alpha subunits that are expressed in the Lymnaea CNS, i.e. G alpha o, G alpha s and G alpha i. The deduced proteins exhibit a very high degree of sequence identity to their vertebrate and invertebrate counterparts. The strong conservation of G protein alpha subunits suggests that functional insights into G protein-mediated signalling routes obtained through the experimental amenability of the Lymnaea CNS will have relevance for similar pathways in the mammalian brain.  相似文献   

11.
Abstract: Western blot analysis, using subtype-specific anti-G protein antibodies, revealed the presence of the following G protein subunits in human neuroblastoma SH- SY5Y cells: Gaα, Giα1, Gjα2, Gcα, Gzα, and Gβ. Differentiation of the cells by all-trans-retinoic acid (RA) treatment (10 μmol/L; 6 days) caused substantial alterations in the abundance of distinct G protein subunits. Concomitant with an enhanced expression of μ-opioid binding sites, the levels of the inhibitory G proteins Giα1 and Gjα1 were found to be significantly increased. This coordinate up-reg- ulation is accompanied by functional changes in μ-opioid receptor-stimulated Iow-Km GTPase, μ-receptor-mediated adenylate cyclase inhibition, and receptor-independent guanosine 5′-(βγ-imido)triphosphate [Gpp(NH)p; 10 nmol/ L]-mediated attenuation of adenylate cyclase activity. In contrast, increased levels of inhibitory G proteins had no effect on muscarinic cholinergic receptor-mediated adenylate cyclase inhibition. With respect to stimulatory receptor systems, a reciprocal regulation was observed for prosta- glandin E1 (PGE1) receptors and Gsα, the G protein subunit activating adenylate cyclase. RA treatment of SH-SY5Y cells increases both the number of PGE1 binding sites and PGE1 stimulated adenylate cyclase activity, but significantly reduced amounts of Gzα were found. This down- regulation is paralleled by a decrease in the stimulatory activity of Gzα as assessed in S49 cyc- reconstitution assays. However, the reduction in Gaα levels had no effect on both intrinsic and receptor-independent-activated [Gpp(NH)p or forskolin; 100 μtmol/L each] adenylate cyclase, suggesting that the amount of Gzα is in excess over the functional capacity of adenylate cyclase in SH-SY5Y cell membranes. Additional quantitative changes were found for Gzα, Gcα, and Gβ subunits. In contrast, neuronal differentiation in the presence of 12-O-tetradecanoylphor- bol 13-acetate (16 nmol/L; 6 days) failed to affect G protein abundance. Our results provide evidence for a specific RA effect on the abundance of distinct G protein sub- units in human SH-SY5Y neuroblastoma cells. These alterations might contribute to functional changes in transmembrane signaling pathways associated with RA-in- duced neuronal differentiation of the cells.  相似文献   

12.
The Drosophila embryo is an attractive model system for investigating the cellular and molecular basis of neuronal development. Here we describe the procedure for the visualization of Drosophila embryonic nervous system using antibodies to neuronal proteins. Since the entire embryonic peripheral nervous and central nervous systems are well characterized at the level of individual cells (Dambly-Chaudière et al., 1986; Bodmer et al., 1987; Bodmer et al., 1989), any aberrations to these systems can be easily identified using antibodies to different neuronal proteins. The developing embryos are collected at certain times to ensure that the embryos are in the proper developmental stages for visualization. After collection, the outer layers of the embryo, the chorion membrane and the vitelline envelope that surrounds the embryo, are removed before fixation. Embryos are then incubated with neuronal antibodies and visualized using fluorescently labeled secondary antibodies. Embryos at stages 12-17 are visualized to access the embryonic nervous system. At stage 12 the CNS germ band starts shortening and by stage 15 the definitive pattern of the commissure has been achieved. By stage 17 the CNS contracts and the PNS is fully developed (Campos-Ortega et al. 1985). Thus changes in the pattern of the PNS and CNS can be easily observed during these developmental stages.Download video file.(52M, mov)  相似文献   

13.
14.
Nitric oxide (NO), which is produced from nitric oxide synthase, is an important cell signaling molecule that is crucial for many physiological functions such as neuronal death, neuronal survival, synaptic plasticity, and vascular homeostasis. This diffusible gaseous compound functions as an effector or second messenger in many intercellular communications and/or cell signaling pathways. Protein S-nitrosylation is a posttranslational modification that involves the covalent attachment of an NO group to the thiol side chain of select cysteine residues on target proteins. This process is thought to be very important for the regulation of cell death, cell survival, and gene expression in the central nervous system (CNS). However, there have been few reports on the role of protein S-nitrosylation in CNS disorders. Here, we briefly review specific examples of S-nitrosylation, with particular emphasis on its functions in neuronal cell death and survival. An understanding of the role and mechanisms underlying the effects of protein S-nitrosylation on neurodegenerative/neuroprotective events may reveal a novel therapeutic strategy for rescuing neurons in neurodegenerative diseases.  相似文献   

15.
Schlank is a member of the highly conserved ceramide synthase family and controls growth and body fat in Drosophila. Ceramide synthases are key enzymes in the sphingolipid de novo synthesis pathway. Ceramide synthase proteins and the (dihydro)ceramide produced are involved in a variety of biological processes among them apoptosis and neurodegeneration. The full extent of their involvement in these processes will require a precise analysis of the distribution and expression pattern of ceramide synthases. Paralogs of the ceramide synthase family have been found in all eukaryotes studied, however the mRNA and protein expression patterns have not yet been analysed systematically. In this study, we use antibodies that specifically recognize Schlank, a schlank mRNA probe and an endogenous schlank promoter driven LacZ reporter line to reveal the expression pattern of Schlank throughout embryogenesis. We found that Schlank is expressed in all embryonic epithelia during embryogenesis including the developing epidermis and the gastrointestinal tract. In addition, Schlank is upregulated in the developing central (CNS) and peripheral nervous system (PNS). Co-staining experiments with neuronal and glial markers revealed specific expression of Schlank in glial and neuronal cells of the CNS and PNS.  相似文献   

16.
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.  相似文献   

17.
18.
Crystal structures of Gαi (and closely related family member Gαt) reveal much of what we currently know about G protein structure, including changes which occur in Switch regions. Gαt exhibits a low rate of basal (uncatalyzed) nucleotide exchange and an ordered Switch II region in the GDP‐bound state, unlike Gαi, which exhibits higher basal exchange and a disordered Switch II region in GαiGDP structures. Using purified Gαi and Gαt, we examined the intrinsic tryptophan fluorescence of these proteins, which reports conformational changes associated with activation and deactivation of Gα proteins. In addition to the expected enhancement in tryptophan fluorescence intensity, activation of GαGDP proteins was accompanied by a modest but notable red shift in tryptophan emission maxima. We identified a cation‐π interaction between tryptophan and arginine residues in the Switch II of Gαi family proteins that mediates the observed red shift in emission maxima. Furthermore, amino‐terminal myristoylation of Gαi resulted in a less polar environment for tryptophan residues in the GTPase domain, consistent with an interaction between the myristoylated amino terminus and the GTPase domain of Gα proteins. These results reveal unique insights into conformational changes which occur upon activation and deactivation of G proteins in solution.  相似文献   

19.
Dock180-related proteins are genetically conserved from Drosophila and C. elegans to mammals and are atypical types of guanine–nucleotide exchange factors (GEFs) for Rac and/or Cdc42 of small GTPases of the Rho family. Eleven members of the family occur in mammalian cells, each playing key roles in many aspects of essential cellular functions such as regulation of cytoskeletal organization, phagocytosis, cell migration, polarity formation, and differentiation. This review will summarize the newly accumulated findings concerning the Dock180-related proteins' molecular and cellular functions, emphasizing the roles of these proteins in neuronal cells and glial cells as well as their interactions in the central and peripheral nervous systems.  相似文献   

20.
Neuronal death during nervous system development, a widely observed phenomenon, occurs through unknown mechanisms. Recent evidence suggests an active, destructive process requiring new gene expression. Sulfated glycoprotein-2 (SGP-2), a secretory product of testicular Sertoli cells has been shown to up-regulate in several nonneural tissues undergoing programmed cell death and in several types of neuronal degeneration. In order to determine if this message up-regulates in neurons undergoing developmentally determined cell death, we have studied the expression of SGP-2 mRNA in the developing and adult rat central nervous system (CNS) with in situ hybridization. We also report on the expression of this message in nonneural tissues from several regions of the developing embryo. The developing and adult rat central nervous system as well as widely varied tissues in the rat embryo express SGP-2 mRNA in a pattern that does not correlate with regions undergoing developmental cell death. In the nervous system, SGP-2 mRNA is expressed in neuronal populations including motor neurons, cortical neurons, and hypothalamic neurons at ages when the period of developmental cell death has passed. In a nonneural tissue (palatal shelve epithelium) for which a developmental cell death period has been described, SGP-2 mRNA was not present in the region where cell death occurs. We conclude that SGP-2 mRNA expression cannot be correlated with programmed cell death in neural or nonneural tissues. The results of this study as well as recently reported SGP-2 homologies indicate a possible role for this protein in secretion and lipid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号