首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
Different anteroposterior (AP) regions of the neural crest normally produce different cell types, both in vivo and in vitro. AP differences in neural crest cell fates appear to be specified in part by mechanisms that act prior to neural crest cell migration. We, therefore, examined the possibility that the fates of neural crest cells, like those of neural tube cells, can be regulated by interactions with Hensen's node. Using a transfilter co-culture system, we found that young (stage 3+ to 4) Hensen's node up-regulates the expression of two cranial-specific phenotypes (fibronectin and smooth muscle actin immunoreactivities) in mass cultures of trunk neural crest cells, and down-regulates the expression of a trunk-specific phenotype (melanin synthesis). The changes in phenotype produced by exposure to young Hensen's node were not accompanied by changes in the proliferation of either fibronectin immunoreactive cells or melanocytes. The capacity of Hensen's node to elicit changes in trunk neural crest cell phenotype decreased as the developmental age of the node increased and was lost by stage 6. In addition, old Hensen's node did not stimulate the expression of trunk-specific phenotypes in cranial neural crest cells, suggesting that cranial- and trunk-specific phenotypes are induced by different mechanisms. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Several studies have suggested that the development of cholinergic properties in cranial parasympathetic neurons is determined by these cells' axial level of origin in the neural crest. All cranial parasympathetic neurons normally derive from cranial neural crest. Trunk neural crest cells give rise to sympathetic neurons, most of which are noradrenergic. To determine if there is an intrinsic difference in the ability of cranial and trunk neural crest cells to form cholinergic neurons, we have compared the development of choline acetyltransferase (ChAT)-immunoreactive cells in explants of quail cranial and trunk neural crest in vitro. Both cranial and trunk neural crest explants gave rise to ChAT-immunoreactive cells in vitro. In both types of cultures, some of the ChAT-positive cells also expressed immunoreactivity for the catecholamine synthetic enzyme tyrosine hydroxylase. However, several differences were seen between cranial and trunk cultures. First, ChAT-immunoreactive cells appeared two days earlier in cranial than in trunk cultures. Second, cranial cultures contained a higher proportion of ChAT-immunoreactive cells. Finally, a subpopulation of the ChAT-immunoreactive cells in cranial cultures exhibited neuronal traits, including neurofilament immunoreactivity. In contrast, neurofilament-immunoreactive cells were not seen in trunk cultures. These results suggest that premigratory cranial and trunk neural crest cells differ in their ability to form cholinergic neurons.  相似文献   

3.
This study shows that explants of quail neural crest cultured in a medium containing serum and chick embryo extract give rise to large numbers of cells expressing immunoreactivity for substance P (SP), a neuropeptide found in sensory neurons. These cells arise from cycling precursors, but do not appear to divide after expressing SP. The SP-positive cells in cranial neural crest cultures express both neurofilament and the Q211 antigen, but those in trunk cultures express only the Q211 antigen. In both cranial and trunk cultures, large subpopulations of the SP-positive cells express tyrosine hydroxylase and/or choline acetyltransferase, neurotransmitter markers characteristic of autonomic neurons. This finding argues against the idea that SP expression necessarily indicates commitment to the sensory neuron lineage. I further show that embryonic dorsal root ganglion (DRG) cells retain the ability to coexpress SP and tyrosine hydroxylase in vitro although to a lesser extent than do neural crest cells.  相似文献   

4.
TGF-β subtypes are expressed in tissues derived from cranial neural crest cells during early mouse craniofacial development. TGF-β signaling is critical for mediating epithelial-mesenchymal interactions, including those vital for tooth morphogenesis. However, it remains unclear how TGF-β signaling contributes to the terminal differentiation of odontoblast and dentin formation during tooth morphogenesis. Towards this end, we generated mice with conditional inactivation of the Tgfbr2 gene in cranial neural crest derived cells. Odontoblast differentiation was substantially delayed in the Tgfbr2fl/fl;Wnt1-Cre mutant mice at E18.5. Following kidney capsule transplantation, Tgfbr2 mutant tooth germs expressed a reduced level of Col1a1 and Dspp and exhibited defects including decreased dentin thickness and absent dentinal tubules. In addition, the expression of the intermediate filament nestin was decreased in the Tgfbr2 mutant samples. Significantly, exogenous TGF-β2 induced nestin and Dspp expression in dental pulp cells in the developing tooth organ. Our data suggest that TGF-β signaling controls odontoblast maturation and dentin formation during tooth morphogenesis.  相似文献   

5.
Based on results of transplantation experiments, it has long been believed that trunk neural crest cells are incapable of chondrogenesis. When pigmented trunk neural crest cells of Ambystoma mexicanum are transplanted to cranial levels of albino (a/a) embryos, the graft cells ultimately produce ectopic fins, but are incapable of following the chondrogenic cranial neural crest pathways. Therefore, heterotopic transplantation does not expose these cells to the same environment experienced by cranial neural crest cells, and is neither an adequate nor a sufficient test of chondrogenic potential. However, in vitro culture of trunk neural crest cells with pharyngeal endoderm does provide a direct test of chondrogenic ability. That cartilage does not form under these conditions demonstrates conclusively that trunk neural crest cells possess no chondrogenic potential.  相似文献   

6.
Summary Immunoperoxidase labelling for fibronectin (FN) in chick embryos showed FN-positive basement membranes surrounding the neural crest cell population prior to crest-cell migration. At cranial levels, crest cells migrated laterally into a large cell-free space. Initially they moved as a tongue of cells contacting the FN-positive basement membrane of the ectoderm, but later the crest cell population expanded into space further from the ectoderm, until eventually the entire cranial cell-free space was occupied by mesenchyme cells. This was accompanied by the appearance of FN among the crest cells. At trunk levels, crest cells entered a relatively small space already containing FN-positive extracellular material. At later stages the migration of trunk crest cells broadly matched the distribution of FN. In vitro, chick and quail embryo ectoderm, endoderm, somites, notochord and neural tube synthesized and organized fibrous FN-matrices, as shown by immunofluorescence. Ectoderm and endoderm deposited this matrix only on the substrate face. The FN content of endoderm and neural tube matrices was transient, the immunofluorescence intensity declining after 1–2 days in culture. Some crest cells of cranial and sacral axial levels synthesized FN. Our data suggests that these were the earliest crest cells to migrate from these levels. This ability may be the first expression of mesenchymal differentiation in these crest cells, and in vivo enable them to occupy a large space. Almost all crest cells from cervico-lumbar axial levels were unable to synthesize FN. In vivo, this inability may magnify the response of these crest cells to FN provided by the neighbouring embryonic tissues.  相似文献   

7.
Effects of isotretinoin on the behavior of neural crest cells in vitro   总被引:2,自引:0,他引:2  
Isotretinoin (13-cis-retinoic acid), an anti-acne medication, has been found to cause severe birth defects which affect the craniofacial elements, ear, heart, thymus, and central nervous system. Many of these structures receive contributions from the cranial neural crest. Here, we examine the possibility that these teratogenic effects are due to disturbances in neural crest development. Cranial and trunk neural crest explant cultures were exposed to different concentrations of isotretinoin and the cell morphology was monitored at daily intervals. Treated neural crest cells often became rounded or spindle shaped, separated from their neighbors, and frequently detached from the substrate or clumped together. In contrast, neural tube cells and cardiac fibroblasts were relatively unaffected by the drug. These results suggest that isotretinoin selectively affects neural crest cells by decreasing their cell-substratum adhesion.  相似文献   

8.
During early vertebrate development, neural crest cells emerge from the dorsal neural tube, migrate into the periphery, and form a wide range of derivatives. There is, however, a significant difference between the cranial and trunk neural crest with respect to the diversity of cell types that each normally produces. Thus, while crest cells from all axial levels form neurons, glia, and melanocytes, the cranial crest additionally generates skeletal derivatives such as bone and cartilage; trunk crest cells are generally thought to lack skeletogenic potential. Here, we show, however, that if avian trunk neural crest cells are cultured in appropriate media, they form both bone and cartilage cells, and if placed into the developing head, they contribute to cranial skeletal components. Thus, the neural crest from all axial levels can generate the full repertoire of crest derivatives. The skeletogenic potential of the trunk neural crest is significant, as it was likely realized in early vertebrates, which had extensive postcranial exoskeletal coverings.  相似文献   

9.
We examined the role of Delta signaling in specification of two derivatives in zebrafish neural plate: Rohon-Beard spinal sensory neurons and neural crest. deltaA-expressing Rohon-Beard neurons are intermingled with premigratory neural crest cells in the trunk lateral neural plate. Embryos homozygous for a point mutation in deltaA, or with experimentally reduced delta signalling, have supernumerary Rohon-Beard neurons, reduced trunk-level expression of neural crest markers and lack trunk neural crest derivatives. Fin mesenchyme, a putative trunk neural crest derivative, is present in deltaA mutants, suggesting it segregates from other neural crest derivatives as early as the neural plate stage. Cranial neural crest derivatives are also present in deltaA mutants, revealing a genetic difference in regulation of trunk and cranial neural crest development.  相似文献   

10.
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively, and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: 1) what establishes the pathways of migration and 2) what controls the final destination and differentiation of various neural crest subpopulations. These questions will be addressed in this review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube, and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted, or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk. The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: 1) the vagal-level neural crest cells exhibit modest developmental bias; 2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively; 3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.  相似文献   

11.
We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties.  相似文献   

12.
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: (1) what establishes the pathways of migration? And (2), what controls the final destination and differentiation of various neural crest subpopulations? These questions will be addressed in this Review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk.The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: (1) the vagal-level neural crest cells exhibit modest developmental bias; (2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively and (3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but take the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.Key words: neural crest, morphogenesis, cell migration, chicken embryo, fate restriction, vagal neural crest, pathways  相似文献   

13.
Neural crest cells are remarkable in their extensive and stereotypic patterns of migration. The pathways of neural crest migration have been documented by cell marking techniques, including interspecific neural tube grafts, immunocytochemistry and Dil-labelling. In the trunk, neural crest cells migrate dorsally under the skin or ventrally through the somites, where they move in a segmental fashion through the rostral half of each sclerotome. The segmental migration of neural crest cells appears to be prescribed by the somites, perhaps by an inhibitory cue from the caudal half. Within the rostral sclerotome, neural crest cells fill the available space except for a region around the notochord, suggesting the notochord may inhibit neural crest cells in its vicinity. In the cranial region, antibody perturbation experiments suggest that multiple cell-matrix interactions are required for proper in vivo migration of neural crest cells. Neural crest cells utilize integrin receptors to bind to a number of extracellular matrix molecules. Substrate selective inhibition of neural crest cell attachment in vitro by integrin antibodies and antisense oligonucleotides has demonstrated that they possess at least three integrins, one being an α1β1 integrin which functions in the absence of divalent cations. Thus, neural crest cells utilize complex sets of interactions which may differ at different axial levels.  相似文献   

14.
We have studied the localizations of transforming growth factor-beta (TGF-β) 2 and 3 immunohistochemically using isoform-specific antibodies and TGF-β3 mRNA by in situ hybridization in the nervous system of the 3- to 15-day-old chick embryo with special reference to spinal cord, hindbrain, and dorsal root ganglia (DRG). At embryonic day (E) 3, TGF-β3 mRNA as well as TGF-β2 and 3 immunoreactivities (IRs) were most prominent in the notochord, wall of the aorta, and dermomyotome. At E5 and E7, strong TGF-β2 and 3 IR were seen in or on radial glia of spinal cord and hindbrain. Radial glia in the floor plate region and ventral commissure gave the most intense signal. In the DRG, fiber strands of intense IRs representing extracellular matrix or satellite cells were seen. Neuronal perikarya did not become IR for TGF-β2 and 3 until E11, but even then the moderate signals for TGF-β3 mRNA could not be specifically localized to the neuronal cell bodies. In E11 and older embryos, spinal cord glial or glial progenitor cells, but not neuronal cell bodies were labeled for TGF-β3 mRNA. Immunocytochemistry and western blot analysis indicated that E8 DRG neurons have the TGF-β receptor type II, and treatment of these cells with NGF induces expression of TGF-β3 mRNA. The TGF-β isoforms 1, 2, and 3 did not promote survival of E8 DRG neurons in dissociated cell cultures. All three TGF-β isoforms, however, promoted neurite growth from E8 DRG explants, but were less potent than nerve growth factor. Our data suggest identical localizations of TGF-β2 and -β3 IR in the developing chick and mammalian nervous systems, underscoring the general importance of TGF-βs in fundamental events of neural development. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Whereas neural crest cells are the source of the peripheral nervous system in the trunk of vertebrates, the “ectodermal placodes,” together with neural crest, form the peripheral nervous system of the head. Cranial ectodermal placodes are thickenings in the ectoderm that subsequently ingress or invaginate to make important contributions to cranial ganglia, including epibranchial and trigeminal ganglia, and sensory structures, the ear, nose, lens, and adenohypophysis. Recent studies have uncovered a number of molecular signals mediating induction and differentiation of placodal cells. Here, we described recent advances in understanding the tissue interactions and signals underlying induction and neurogenesis of placodes, with emphasis on the trigeminal and epibranchial. Important roles of Fibroblast Growth Factors, Platelet Derived Growth Factors, Sonic Hedgehog, TGFβ superfamily members, and Wnts are discussed.  相似文献   

16.
17.
The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin’s inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.  相似文献   

18.
The cell substratum attachment (CSAT) antibody recognizes a 140-kD cell surface receptor complex involved in adhesion to fibronectin (FN) and laminin (LM) (Horwitz, A., K. Duggan, R. Greggs, C. Decker, and C. Buck, 1985, J. Cell Biol., 101:2134-2144). Here, we describe the distribution of the CSAT antigen along with FN and LM in the early avian embryo. At the light microscopic level, the staining patterns for the CSAT receptor and the extracellular matrix molecules to which it binds were largely codistributed. The CSAT antigen was observed on numerous tissues during gastrulation, neurulation, and neural crest migration: for example, the surface of neural crest cells and the basal surface of epithelial tissues such as the ectoderm, neural tube, notochord, and dermomyotome. FN and LM immunoreactivity was observed in the basement membranes surrounding many of these epithelial tissues, as well as around the otic and optic vesicles. In addition, the pathways followed by cranial neural crest cells were lined with FN and LM. In the trunk region, FN and LM were observed surrounding a subpopulation of neural crest cells. However, neither molecule exhibited the selective distribution pattern necessary for a guiding role in trunk neural crest migration. The levels of CSAT, FN, and LM are dynamic in the embryo, perhaps reflecting that the balance of surface-substratum adhesions contributes to initiation, migration, and localization of some neural crest cell populations.  相似文献   

19.
Cardiac neural crest (CNC) plays a requisite role during cardiovascular development and defects in the formation of CNC-derived structures underlie several common forms of human congenital birth defects. Migration of the CNC cells to their destinations as well as expansion and maintenance of these cells are important for the normal development of the cardiac outflow tract and aortic arch arteries; however, molecular mechanisms regulating these processes are not well-understood. Fibronectin (FN) protein is present along neural crest migration paths and neural crest cells migrate when plated on FN in vitro; therefore, we tested the role of FN during the development of the CNC in vivo. Our analysis of the fate of the neural crest shows that CNC cells reach their destinations in the branchial arches and the cardiac outflow tract in the absence of FN or its cellular receptor integrin α5β1. However, we found that FN and integrin α5 modulate CNC proliferation and survival, and are required for the presence of normal numbers of CNC cells at their destinations.  相似文献   

20.
Pax7 lineage contributions to the Mammalian neural crest   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号