共查询到20条相似文献,搜索用时 0 毫秒
1.
In Drosophila, antennae and legs are serially homologous appendages, and yet they develop into organs of very different structure and function. This implies that different genetic mechanisms operate onto a common developmental ground state to produce antennae and legs. Still few such mechanisms have been uncovered. During leg development, bowl, a member of the odd-skipped gene family, has been shown to participate in the formation of the leg segmental joints. Here we report that, in the antennal disc, bowl has a dramatically different role: bowl is expressed in the ventral antennal disc to prevent inappropriate expression of wg early during development. The removal of bowl function leads to the activation of wg in the dpp-expressing domain. This ectopic expression of wg, together with dpp, results in a new proximo-distal axis that promotes non-autonomous antennal duplications. The role of bowl in suppressing a supernumerary PD axis is maintained even when the antennal disc is homeotically transformed into a leg-like appendage. Therefore, bowl is part of a genetic program that suppresses the formation of supernumerary appendages specifically in the fly's head. 相似文献
2.
In Drosophila, the Hox gene Abdominal-B is required to specify the posterior abdomen and the genitalia. Homologues of Abdominal-B in other species are also needed to determine the posterior part of the body. We have studied the function of Abdominal-B in the formation of Drosophila genitalia, and show here that absence of Abdominal-B in the genital disc of Drosophila transforms male and female genitalia into leg or, less frequently, into antenna. These transformations are accompanied by the ectopic expression of genes such as Distal-less or dachshund, which are normally required in these appendages. The extent of wild-type and ectopic Distal-less expression depends on the antagonistic activities of the Abdominal-B gene, as a repressor, and of the decapentaplegic and wingless genes as activators. Absence of Abdominal-B also changes the expression of Homothorax, a Hox gene co-factor. Our results suggest that Abdominal-B forms genitalia by modifying an underlying positional information and repressing appendage development. We propose that the genital primordia should be subdivided into two regions, one of them competent to be transformed into an appendage in the absence of Abdominal-B. 相似文献
3.
4.
I propose a model which accounts for the geometries and sequencein which compartmental boundary lines arise on the differentimaginal discs, and on the blastoderm of Drosophila melanogaster;and propose that successive lines are recorded by differentbinary switches, to create a binary epigenetic code word specifyingeach disc, and disc compartment. I suppose a biochemical systemundergoing reaction and diffusion acts throughout development.As an imaginal disc grows, a succession of differently shapedchemical concentration patterns form at a discrete set of discsizes. I suppose a specific concentration of one chemical isa threshold. Concentrations above or below threshold switchcells to one or another of two commitments. Then the line acrossthe imaginal disc with the threshold concentration is a predictedcompartmental boundary. The sequence and geometries of suchlines predict the compartmental boundaries seen on the wingdisc, the other discs, and on the blastoderm stage egg. Thecompartmental lines on the wing disc suggest that a terminalcompartment is specified by a combination of binary names recordinga sequence of binary commitments: anterior, not posterior; dorsal,not ventral; wing, not thorax; proximal, not distal. Each combinationcomprises a binary epigenetic code word. Recently I constructedan independent model for transdetermination in Drosophila whichproposed a similar binary epigenetic code for the differentdiscs. The clone restriction lines predicted on the blastodermby my transdetermination model, the chemical pattern model,and analogy with the wing disc, are nearly identical. Severalare already confirmed. The resultant binary code scheme correctlypredicts many relative transdetermination frequencies and accountssimply for the action of most homeotic mutants as genes whichalter a single switch state in one or more discs. 相似文献
5.
Fifteen years ago, cell lineage restriction boundaries were discovered in the embryonic vertebrate hindbrain, subdividing it into a series of cell-tight compartments (known as rhombomeres). Compartition, together with segmentally reiterative neuronal architecture and the nested expression of Hox genes, indicates that the hindbrain has a truly metameric organization. This finding initiated a search for compartments in other regions of the developing brain. The results of recent studies have clarified where compartment boundaries exist, have shed light on molecular mechanisms that underlie their formation and have revealed an important function of these boundaries: the positioning and stabilization of local signalling centres. 相似文献
6.
Mikkola ML 《Cytokine & growth factor reviews》2008,19(3-4):219-230
The development of skin appendages such as hairs, teeth, and mammary glands is regulated by signaling molecules of the Wnt, FGF, TGFbeta, and Hedgehog pathways. Last decade has also revealed a pivotal role for the TNF family ligand ectodysplasin (Eda) in multiple steps of epithelial appendage morphogenesis, from initiation to differentiation. Surprisingly, other members of the TNF superfamily such as Rank ligand, lymphotoxins, and TNF have recently been linked with specific aspects of skin appendage biology including branching of the mammary gland, hair shaft formation, and hair follicle cycling. This review focuses on the novel discoveries of Eda and other TNF related cytokines in skin appendage development made since the previous review on this topic in Cytokine and Growth Factor reviews in 2003. 相似文献
7.
8.
The mechanisms that control organ growth are among the least known in development. This is particularly the case for the process in which growth is arrested once final size is reached. We have studied this problem in the wing disc of Drosophila, the developmental and growth parameters of which are well known. We have devised a method to generate entire fast-growing Minute(+) (M(+)) discs or compartments in slow developing Minute/+ (M/+) larvae. Under these conditions, a M(+) wing disc gains at least 20 hours of additional development time. Yet it grows to the same size of Minute/+ discs developing in M/+ larvae. We have also generated wing discs in which all the cells in either the anterior (A) or the posterior (P) compartment are transformed from M/+ to M(+). We find that the difference in the cell division rate of their cells is reflected in autonomous differences in the developmental progression of these compartments: each grows at its own rate and manifests autonomous regulation in the expression of the developmental genes wingless and vestigial. In spite of these differences, ;mosaic' discs comprising fast and slow compartments differentiate into adult wings of the correct size and shape. Our results demonstrate that imaginal discs possess an autonomous mechanism with which to arrest growth in anterior and posterior compartments, which behave as independent developmental units. We propose that this mechanism does not act by preventing cell divisions, but by lengthening the division cycle. 相似文献
9.
Thomas Kornberg 《Developmental biology》1981,86(2):363-372
A clonal analysis has shown that the dorsal surface of the first abdominal segment of Drosophila melanogaster is subdivided into anterior and posterior compartments. Cells of the posterior compartment grow up to but not beyond the anterior-posterior compartment border within the first abdominal segment and the intersegmental border that defines the boundary between the first and second abdominal segments. Growing within these boundaries, a narrow band of tissue clonally isolated from the adjoining tissue is formed. When these posterior cells are deficient for the engrailed locus, however, neither the compartment nor the segment border is maintained. The implications, that compartmentalization is essential for segmentation, and that all insect segments are subdivided by anterior and posterior compartments, are discussed. 相似文献
10.
11.
Genetic basis of skin appendage development 总被引:1,自引:0,他引:1
Mikkola ML 《Seminars in cell & developmental biology》2007,18(2):225-236
Morphogenesis of hair follicles, teeth, and mammary glands depends on inductive epithelial-mesenchymal interactions mediated by a conserved set of signalling molecules. The early development of different skin appendages is remarkably similar. Initiation of organogenesis is marked by the appearance of a local epithelial thickening, a placode, which subsequently invaginates to produce a bud. These early developmental stages require many of the same genes and signalling circuits and consequently alterations in them often cause similar phenotypes in several skin appendages. After the bud stage, these organs adopt diverse patterns of epithelial growth, reflected in the usage of more divergent genes in each. 相似文献
12.
13.
The transforming growth factor beta (TGFbeta) superfamily encompasses a number of structurally related proteins that can be divided into several subfamilies including TGFbetas, activins/inhibins and bone morphogenetic proteins (BMPs). The Smads are major intracellular mediators in transducing the signals of TGFbeta superfamily members, and are abundantly expressed in the developing epidermis and epidermal appendages. Moreover, the phenotypes of transgenic/knockout mice with altered components of the TGFbeta superfamily signaling pathway suggest that TGFbeta superfamily signaling is required for epidermal/appendage development. TGFbeta superfamily members are involved in most events during epidermal/appendage development through the TGFbeta signal transduction pathway and through cross talk with other signaling pathways. Future studies will be instrumental in defining the precise roles for TGFbeta superfamily signaling in epidermal/appendage development. 相似文献
14.
Arthropods dominate our seas, land, and air and have done so for hundreds of millions of years. Among the arthropods, crustaceans present us with a rich history of morphological change, much of which is still represented among extant forms. Crustacea largely interact with their environment via their appendages; thus vast amounts of variation exist among the different appendages of a single individual and between appendages from different species. Comparative studies of crustacean appendage development present us with an important story regarding the evolution of morphology over both relatively short (a few million years) and relatively long (a few hundred million years) evolutionary time scales. Recent studies have used the genetic and molecular data from Drosophila development to try to understand the molecular basis for some of the variations seen in crustacean limbs. Here we review some of these data based on the expression patterns of the genes Ultrabithorax, abdominal - A, Sex combs reduced, and Distal-less. 相似文献
15.
Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. 总被引:3,自引:0,他引:3
F Cavodeassi R Diez Del Corral S Campuzano M Domínguez 《Development (Cambridge, England)》1999,126(22):4933-4942
The Drosophila eye is patterned by a dorsal-ventral organising centre mechanistically similar to those in the fly wing and the vertebrate limb bud. Here we show how this organising centre in the eye is initiated - the first event in retinal patterning. Early in development the eye primordium is divided into dorsal and ventral compartments. The dorsally expressed homeodomain Iroquois genes are true selector genes for the dorsal compartment; their expression is regulated by Hedgehog and Wingless. The organising centre is then induced at the interface between the Iroquois-expressing and non-expressing cells at the eye midline. It was previously thought that the eye develops by a mechanism distinct from that operating in other imaginal discs, but our work establishes the importance of lineage compartments in the eye and thus supports their global role as fundamental units of patterning. 相似文献
16.
17.
The developing leg of Drosophila is initially patterned by subdivision of the leg into proximal and distal domains by the activity of the homeodomain proteins Extradenticle (Exd) and Distal-less (Dll). These early domains of gene expression are postulated to reflect a scenario of limb evolution in which an undifferentiated appendage outgrowth was subdivided into two functional parts, the coxapodite and telopodite. The legs of most arthropods have a more complex morphology than the simple rod-shaped leg of Drosophila. We document the expression of Dll and Exd in two crustacean species with complex branched limbs. We show that in these highly modified limbs there is a Dll domain exclusive of Exd but there is also extensive overlap in Exd and Dll expression. While arthropod limbs all appear to have distinct proximal and distal domains, those domains do not define homologous structures throughout arthropods. In addition, we find a striking correlation throughout the proximal/distal extent of the leg between setal-forming cells and Dll expression. We postulate that this may reflect a pleisiomorphic function of Dll in development of the peripheral nervous system. In addition, our results confirm previous observations that branch formation in multiramous arthropod limbs is not regulated by a simple iteration of the proximal/distal patterning module employed in Drosophila limb development. 相似文献
18.
The Drosophila heart, also called the dorsal vessel, is an organ for hemolymph circulation that resembles the vertebrate heart at its transient linear tube stage. Dorsal vessel morphogenesis shares several similarities with early events of vertebrate heart development and has proven to be an insightful system for the study of cardiogenesis due to its relatively simple structure and the productive use of Drosophila genetic approaches. In this review, we summarize published findings on Drosophila heart development in terms of the regulators and genetic pathways required for cardiac cell specification and differentiation, and organ formation and function. Emerging genome-based strategies should further facilitate the use of Drosophila as an advantageous system in which to identify previously unknown genes and regulatory networks essential for normal cardiac development and function. 相似文献
19.
20.
Spineless-Aristapedia: A Homeotic Gene That Does Not Control the Development of Specific Compartments in Drosophila 总被引:1,自引:0,他引:1
Gary Struhl 《Genetics》1982,102(4):737-749
A two-step screen for isolating null mutations of the spineless-aristapedia locus has been performed, and several amorphic mutations, as well as a small deficiency, have been obtained. With the exception of the deficiency, which deletes genes required for viability on either side of the spineless-aristapedia locus, these mutations result in a transformation of only the distal antenna into distal leg, thereby indicating that the spineless-aristapedia gene is required for specifying antennal as opposed to leg development in only the distal portion of the antenna. Because this distal region does not appear to be a developmental compartment, it is probable that the spineless-aristapedia gene, unlike several other homeotic genes, is required for maintaining the correct determined state in a population of cells defined by their relative position, not by their ancestry. 相似文献