首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of oxygenates in gasoline in the United States may increase atmospheric levels of aldehydes. To assist in health assessments of inhalation exposure to aldehydes, we studied glutathione (GSH) depletion by low-molecular-weight n-alkanals and 2-alkenals, ubiquitous air pollutants, in adult rat lung (ARL) cells by laser cytometry. For each homologous series, the effective aldehyde concentration that depleted GSH by 50% (EC50) in ARL cells correlates with published values for the median lethal dose of the chemicals and with Hammett/Taft electronic parameters, * for n-alkanals and p* for 2-alkenals. n-Alkanals (EC50, 110–400 mmol/L) were 1000 times less effective in depleting GSH than were 2-alkenals (EC50, 2–180 mol/L), of which acrolein was the most potent. Ability of the 2-alkenals to deplete GSH follows the second-order rate constant for adduct formation. Ability of n-alkanals to deplete GSH follows chain length. Within a homologous series of low-molecular-weight aldehydes, structure–activity relationships are useful for predicting the toxicity of the aldehydes in vitro and in vivo.  相似文献   

2.
The kinetic parameters of the inhibition of pigeon brain acetylchlolinesterase (AChE) by procaine hydrochloride were investigated. Procaine (0·083–1·67 mM) reversibly inhibited AChE activity (15–83 percent) in a concentration dependent manner, the IC50 being about 0·38 mM. The Michaelis-Menten constant (Km) for the hydrolysis of acetylthiocholine iodide was found to be 1·53 × 10?4 M and the Vmax was 1·06 μmol min?1 mg?1 protein. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition is of the linear mixed type which is considered to be a mixture of partial competitive and pure non-competitive. The values of Ki(slope) and Ki (intercepts) were estimated as 0·14 mM and 0·22 mM respectively by the primary Dixon and by the secondary replots of the Lineweaver-Burk plot. The Ki′/Ki ratio shows that procaine has a greater affinity of binding for the peripheral than for the active site.  相似文献   

3.
Kim KY  Nam KA  Kurihara H  Kim SM 《Phytochemistry》2008,69(16):2820-2825
Diabetes mellitus is a most serious and chronic disease whose incidence rates are increasing with incidences of obesity and aging of the general population over the world. One therapeutic approach for decreasing postprandial hyperglycemia is to retard absorption of glucose by inhibition of α-glucosidase. Two bromophenols, 2,4,6-tribromophenol and 2,4-dibromophenol, were purified from the red alga Grateloupia elliptica. IC50 values of 2,4,6-tribromophenol and 2,4-dibromophenol were 60.3 and 110.4 μM against Saccharomyces cerevisiae α-glucosidase, and 130.3 and 230.3 μM against Bacillus stearothermophilus α-glucosidase, respectively. In addition, both mildly inhibited rat-intestinal sucrase (IC50 of 4.2 and 3.6 mM) and rat-intestinal maltase (IC50 of 5.0 and 4.8 mM). Therefore, bromophenols of G. elliptica have potential as natural nutraceuticals to prevent diabetes mellitus because of their high α-glucosidase inhibitory activity.  相似文献   

4.
Reactive aldehydes including methyl glyoxal, acrolein and 4-hydroxy-2-nonenal (4-HNE) have been implicated in the progression of neurodegenerative diseases. The reduction of aldehydes to alcohols by the aldo–keto reductase (AKR) family of enzymes may represent an important detoxication route within neuronal cells. In this study, the ability of AKR enzymes to protect human neuroblastoma SH-SY5Y cells against reactive aldehydes was assessed. Using gene-specific RNA interference (RNAi), we report that AKR7A2 makes a significant contribution to the reduction of methyl glyoxal in SH-SY5Y cells, with its knockdown altering the IC50 from 410 to 25.8 μM, and that AKR1C3 contributes to 4-HNE reduction, with its knockdown lowering the IC50 from 1.25 to 0.58 μM. In addition, we have shown that pretreatment of cells with sub-lethal concentrations of 4-HNE or methyl glyoxal leads to a significant increase in IC50 when cells are exposed to higher concentrations of the toxic aldehyde. The IC50 for methyl glyoxal increased from 410 μM to 1.9 mM, and the IC50 for 4-HNE increased from 120 to 690 nM. To investigate this protection, we show that pretreatment of cells with the AKR inhibitor sorbinil lead to decreased resistance to aldehydes. We show that AKR1C can be induced 8-fold in SH-SY5Y cells by treatment with sub-lethal concentrations of methyl glyoxal, and 5-fold by 4-HNE treatment. AKR1B is not induced by methyl glyoxal but is induced 10-fold by 4-HNE treatment. Furthermore, we have shown that this adaptive response can also be induced using the chemoprotective agent tert-butyl hydroquinone (t-BHQ), and that this also evokes an increase in the expression and activity of AKR1B and AKR1C. These findings highlight the potential for the interventional upregulation of AKR via non-toxic derivatives or natural compounds as a novel therapeutic approach towards the detoxication of aldehydes, with the aim of halting the progression of aldehyde-dependent neurodegenerative diseases.  相似文献   

5.
Isoflavones genistein and daidzein are nonsteroidal phytoestrogens occurring mainly in soybean foods. These phytoestrogens possess estrogenic properties and show a variety of health benefits as anti‐inflammatory agents. However, the mechanism of their action has not been identified in detail. The aim of this study is to characterize the antioxidant powers of genistein, daidzein and daidzein metabolite–equol through their activities to scavenge superoxide anion radical (O?2?), hydroxyl radical (HO?), 2,2–diphenyl–1‐picrylhydrazyl radical (DPPH?) and hydrogen peroxide (H2O2) using chemiluminescence and spectrophotometry techniques. Potassium superoxide in dimethyl sulphoxide (DMSO) and 18‐crown‐6 ether were used as a source of O?2?. Hydroxyl radicals were produced using the Fenton reaction. In free radical assays, genistein had the IC50 values (an amount of antioxidant concentration required to decrease the initial radical concentration by 50%) 0.391 ± 0.012 mM for O?2?, 0.621 ± 0.028 mM for HO? and 1.89 ± 0.16 mM for DPPH?. The IC50 values for daidzein for these free radicals were 1.924 ± 0.011 mM, 0.702 ± 0.012 mM and 2.81 ± 0.03 mM, respectively. Equol was the most active the free radical scavenger with IC50 = 0.451 ± 0.018 mM for HO? and IC50 = 1.36 ± 0.11 mM for DPPH?. All tested compounds exerted a significant effect on the H2O2: IC50 = 18.1 ± 1.1 μM for genistein, IC50 = 2.1 ± 0.5 μM for daidzein, and IC50 = 1.06 ± 0.2 μM for equol. These findings show that genistein, daidzein and equol are effective free radical scavengers and possess high antioxidant power in vitro. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Biological properties of new copper(II) complexes of 2-methylthionicotinate (2-MeSNic) of composition Cu(2-MeSNic)2(MeNia)2·4H2O (where MeNia isN-methylnicotinamide), Cu(2-MeSNic)2(Nia)2·2H2O (where Nia is nicotinamide) and Cu(2-MeSNic)2(2 (where L is isonicotinamide (iNia) or ethyl nicotinate (EtNic)) are reported. Gram-bacteria (Escherichia coli) are more resistant against Cu(II) complexes than Gram+-bacteria (Staphylococcus aureus)—significant antistaphylococcal activity was found with Cu(2-MeSNic)2(MeNia)2·4H2O (IC50 1.3 mmol/L).Caddida parapsilosis was most inhibited by Cu(2-MeSNic)2·H2O and Cu(2-MeSNic)2(MeNia)2·4H2O (IC50 1.4 mmol/L and 1.5 mmol/L, respectively). Biosynthesis of nucleic acids influenced by Cu(2-MeSNic)2-(Nia)2·2H2O indicated by incorporation of14C-adenine (IC50(Ade) 0.31 mmol/L) is more sensitive than biosynthesis of proteins indicated by incorporation of14C-leucine (IC50(Leu) 9.94 mmol/L). Cu(II) complexes with expressed antimicrobial activity showed no mutagenic activity.  相似文献   

7.
Jake Bello 《Biopolymers》1993,33(3):491-495
The helix content of [L -Lys(Me3)]n · ClO4, and [L -Lys(Me3)50, L -Ala50]n · ClO4 in water is markedly increased by the presence of sucrose and glycerol. For [L -Lys(Me3)]n · ClO4 the ellipticity at 222 nm changes from +2 × 103 deg cm2 dmole?1 in water to ?44 × 103 in 50% glycerol. Sucrose does not promote helix formation in melittin at pH 7.2, but glycerol does. At pH 5.5 sucrose and, more so, glycerol, induce helix in melittin. Glycerol induces some helix in methylated melittin, but less than in melittin. The results are discussed in relation to excluded volume effects, ΔG of transfer of peptide and hydrophobic groups from water to mixed solvents, electrostatic effects, and preferential hydration. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
We examined cytoplasmic pH regulation inSchizosaccharomyces pombe andSaccharomyces cerevisiae using pH-sensitive fluorescent dyes. Of several different fluorescent compounds tested, carboxy-seminaphthorhodafluor-1 (C.SNARF-1) was the most effective. Leakage of C.SNARF-1 fromS. pombe was much slower than leakage fromC. cerevisiae. Using the pH-dependent fluorescence of C.SNARF-1 we showed that at an external pH of 7, mean resting internal pH was 7.0 forS. pombe and 6.6 forS. cerevisiae. We found that internal pH inS. pombe was maintained over a much narrower range in response to changes in external pH, especially at acidic pH. The addition of external glucose caused an intracellular alkalinization in both species, although the effect was much greater inS. cerevisiae than inS. pombe. The plasma membrane H+-ATPase inhibitor diethylstilbestrol reduced both the rate and extent of alkalinisation, with an IC50 of approximately 35 M in both species. Amiloride also inhibited internal alkalinisation with IC50's of 745 M forS. cerevisiae and 490 M forS. pombe.Abbreviations C.SNARF-1 carboxy-seminaphthorhodafluor-1 (-AM-acetoxy-methylester) - DES diethylstilbestrol - IC50 apparent inhibitory constant - BCECF 2,7-bis-(carboxyethyl)-5(6)-carboxyfluorescein (-AM--pentaacetoxymethyl ester) - FDA fluorescein diacetate  相似文献   

9.
The recent increase in human diseases and cancers requires new drugs to combat them. Sources have been found in rare microorganisms, those from extreme habitats, and from endophytes. In this study, the biological activity of endophytic fungi associated with the Brazilian medicinal plant Combretum leprosum was assessed. Cytotoxic and antiproliferative effects were evaluated using seven human cancer cells lines (HeLa, ECV304, B16F10, J744, P388, Jurkat and k562). In addition the minimum inhibitory concentration (MIC) against pathogenic human fungal was determined using four Candida species and the filamentous fungi Cryptococcus neoformans and Trichophyton rubrum. A compound from extracts of phylotype Aspergillus oryzae CFE108 exhibited the most significant cytotoxicity effect against histiocytic sarcoma J774 (IC50 of 0.80 μg?mL?1), leukemia Jurkat (IC50 of 0.89 μg?mL?1), bladder carcinoma ECV304 (IC50 of 3.08 μg?mL?1) and cervical cancer HeLa (IC50 of 2.97 μg?mL?1). The extract from phylotypes Fusarium oxysporum CFE177 displayed antifungal activity and inhibited the growth of Candida glabrata (4 μg?mL?1) as well as that of C. neoformans and T. rubrum with the lowest MIC being 62.5 μg?mL?1. In addition, the fractions from A. oryzae CFE108 showed marked morphological activity (rounding up) on endothelial cells (tEnd.1 cells), which is indicative of potential antivascular activity. Our results indicate that the endophytes associated with this medicinal plant may be a source of novel drugs.  相似文献   

10.
Inhibition of α-glucosidase and α-amylase delays the digestion of starch and disaccharides to absorbable monosaccharides, resulting in a reduction of postprandial hyperglycemia. Finding effective mammalian α-glucosidase inhibitors from natural sources can be beneficial in the prevention and treatment of diabetes mellitus. We investigated the inhibitory activity of cinnamic acid derivatives against rat intestinal α-glucosidase and porcine pancreatic α-amylase in vitro. Among 11 cinnamic acid derivatives, caffeic acid, ferulic acid, and isoferulic acid were the most potent inhibitors against intestinal maltase with IC50 values of 0.74?±?0.01, 0.79?±?0.04, and 0.76?±?0.03?mM, respectively, whereas ferulic acid (IC50?=?0.45?±?0.01?mM) and isoferulic acid (IC50?=?0.45?±?0.01?mM) were effective intestinal sucrase inhibitors. However, all cinnamic acid derivatives were found to be inactive in pancreatic α-amylase inhibition. Kinetic analysis revealed that intestinal maltase was inhibited by caffeic acid, ferulic acid, and isoferulic acid in a mixed-inhibition manner. In addition, ferulic acid and isoferulic acid inhibited intestinal sucrase in a mixed type manner, whereas caffeic acid was a non-competitive inhibitor. The combination of isoferulic acid and acarbose showed an additive inhibition on intestinal sucrase. This study could provide a new insight into naturally occurring intestinal α-glucosidase inhibitors that could be useful for treatment of diabetes and its complications.  相似文献   

11.
Aldehydes produced under various environmental stresses can cause cellular injury in plants, but their toxicology in photosynthesis has been scarcely investigated. We here evaluated their effects on photosynthetic reactions in chloroplasts isolated from Spinacia oleracea L. leaves. Aldehydes that are known to stem from lipid peroxides inactivated the CO2 photoreduction to various extents, while their corresponding alcohols and carboxylic acids did not affect photosynthesis. α,β-Unsaturated aldehydes (2-alkenals) showed greater inactivation than the saturated aliphatic aldehydes. The oxygenated short aldehydes malondialdehyde, methylglyoxal, glycolaldehyde and glyceraldehyde showed only weak toxicity to photosynthesis. Among tested 2-alkenals, 2-propenal (acrolein) was the most toxic, and then followed 4-hydroxy-(E)-2-nonenal and (E)-2-hexenal. While the CO2-photoreduction was inactivated, envelope intactness and photosynthetic electron transport activity (H2O → ferredoxin) were only slightly affected. In the acrolein-treated chloroplasts, the Calvin cycle enzymes phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphophatase, sedoheptulose-1,7-bisphosphatase, aldolase, and Rubisco were irreversibly inactivated. Acrolein treatment caused a rapid drop of the glutathione pool, prior to the inactivation of photosynthesis. GSH exogenously added to chloroplasts suppressed the acrolein-induced inactivation of photosynthesis, but ascorbic acid did not show such a protective effect. Thus, lipid peroxide-derived 2-alkenals can inhibit photosynthesis by depleting GSH in chloroplasts and then inactivating multiple enzymes in the Calvin cycle.  相似文献   

12.
Δ53β hydroxysteroid dehydrogenase activity transforms biologically inactive Δ53β hydroxy steroids into the active Δ43-keto products (e.g. pregnenolone to progesterone). Using a cytochemical procedure which allows for the continuous microdensitometric monitoring of an enzyme reaction as it proceeds and a well described cytochemical assay for Δ53β HSD we have analysed the initial velocity rates (Vo) for dehydroepiandrosterone (DHEA) binding to this enzyme in regressing (i.e. 20α hydroxy steroid dehydrogenase positive) corpus luteum (CL) cells in unfixed tissue sections (5 μm) of the dioestrous and proestrous rat ovary. The results are mean ± S.E.M. The relationship between DHEA concentration (0 to 50 μM) and Δ53β HSD activity in the dioestrous corpora lutea was sigmoidal and had an atypical 1/Vo versus 1/S plot, the x intercept being positive. Using a 1/Vo versus 1/S2 plot the Vmax was determined to be 1·0 ± 0·08 μmol min?1 mg?1 CL (n = 6). The Hill constant was 2·7 ± 0·02 (n = 6) suggesting a high degree of positive co-operativity for DHEA binding. The S concentration for half maximal activity was 17 ± 1 μmoles (n = 6). In the corpora lutea cells of the proestrous ovary, the Vmax for DHEA transformation was unchanged (0·95 ± 0·04 μmol min?1 mg?1, n = 3) whilst the S0·5 was significantly increased to 27 ± 0·1 (p < 0·01, n = 3). The Hill constant remained positive being 2·9 ± 0·2 (n = 3). NAD+ binding to 3β HSD in regressing corpora lutea of the proestrous ovary has been demonstrated previously to be hyperbolic and fit the classical Michaelis-Menten model.1 Extending the analysis of NAD+ binding to the regressing corpus luteum of the dioestrous rat ovary revealed similar kinetic characteristics to that seen with the proestrous enzyme, the apparent Vmax and Km being 0·84 ± 0·04 μmol min?1 mg?1 CL (n = 3) and 27 ± 7 μmol 1?1 (n = 3) respectively. The Hill constant was 1·1 ± 0·03 (n = 3), indicating no co-operativity of co-factor binding.  相似文献   

13.
Aims: To investigate the effect of molasses concentration, initial pH of molasses medium, and inoculum’s size to maximize ethanol and minimize methanol, fusel alcohols, acetic acid and aldehydes in the fermentation mash in industrial fermentors. Methods and Results: Initial studies to optimize temperature, nitrogen source, phosphorous source, sulfur supplement and minerals were performed. The essential nutrients were urea (2 kg in 60 m3), 0·5 l each of commercial phosphoric acid and sulfuric acid (for pH control) added at the inoculum preparation stage only. Yields of ethanol, methanol, fusel alcohols, total acids and aldehydes per 100‐l fermentation broth were monitored. Molasses at 29°Brix (degree of dissolved sugars in water), initial pH 4·5, inoculum size 30% (v/v) and anaerobic fermentation supported maximum ethanol (7·8%) with YP/S = 238 l ethanol per tonne molasses (96·5% yield) (8·2% increase in yield), and had significantly lower values of byproducts than those in control experiments. Conclusions: Optimization of process variables resulted in higher ethanol yield (8·2%) and reduced yield of methanol, fusel alcohols, acids and aldehydes. Significance and Impact of the Study: More than 5% substrate is converted into byproducts. Eliminating or reducing their formation can increase ethanol yield by Saccharomyces cerevisiae, decrease the overall cost of fermentation process and improve the quality of ethanol.  相似文献   

14.
Various inhibitors were tested for their inhibitory effects on soybean urease. The Ki values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20?±?0.05?mM, 0.22?±?0.04?mM, 1.50?±?0.10?mM, and 2.00?±?0.11?mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag+, Hg2+, and Cu2+ showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC50 = 2.3?×?10?8 mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO3, and Na2SO4) showed that only F? inhibited soybean urease significantly (IC50 = 2.9?mM). Competitive type of inhibition was observed for this anion with a Ki value of 1.30?mM.  相似文献   

15.
Based on our previous docking model, in order to carry out more rational drug design, totally 82 vinyl sulfonyl fluorides, including some 2-(hetero)arylethenesulfonyl fluorides and 1,3-dienylsulfonyl fluorides derivatives as potential human telomerase inhibitors were designed and synthesised. The in vitro anticancer activity assay showed that compound 57 (1E,3E)-4-(4-((E)-2-(fluorosulfonyl)vinyl)phenyl)buta-1,3-diene-1-sulfonyl fluoride exhibited high activity against A375 and MDA-MB-231 cell lines with IC50 1.58 and 3.22?µM, but it manifested obvious un-toxic effect against GES-1 and L-02 with IC50 with IC50 values less than 2.00?mM. By the modified TRAP assay, some compounds including 57 exhibited potent inhibitory activities against telomerase with IC50 values of 0.71–0.97?µM.  相似文献   

16.
Using nematophagous fungi for the biological control of animal parasitic nematodes will become one of the most promising strategies in the search for alternative chemical drugs. The purpose of this study was to check the in vitro activity of four anthelmintics, four chemical fungicides and two antifungal drugs on the spore germination of nematophagous fungi: Duddingtonia flagrans (SF170), Arthrobotrys oligospora (447), Arthrobotrys superba (435) and Arthrobotrys sp. (PS011). A modified 24-well cell culture plate assay was conducted to evaluate the susceptibility of nematophagous fungi against drugs tested by calculating the effective middle concentrations (EC50) of each tested drug to inhibit the germination of fungal spores. EC50 ranged between 0·7 and 47·2 μg ml−1 for fenbendazole, thiabendazole and ivermectin, except levamisole (546·5–4057·8 μg ml−1). EC50 of tested fungicides was 0·6–2·3 μg ml−1 for carbendazim, 55·9–247·4 μg ml−1 for metalaxyl, 24·4–45·2 μg ml−1 for difenoconazole, and 555·9–1438·3 μg ml−1 for pentachloronitrobenzene (PCNB). EC50 of two antifungal drugs was 0·03–3·4 μg ml−1 for amphotericin B and 0·3–10·9 μg ml−1 for ketoconazole. The results showed that 10 tested drugs, except for levamisole and PCNB, had in vitro inhibitory effects on nematophagous fungi. The chlamydospores of Dflagrans had the highest sensitivity to nine tested drugs, except for ketoconazole.  相似文献   

17.
A series of 4-alkylamino-2-ethoxycyclobut-3en-1,2-diones has been synthesized, characterized and their inhibitory effect on pancreatic lipase (PL) was evaluated. The compound 1 has shown relatively high potency (IC50?=?0.11?mM) compared with the most effective anti-obesity drug, tetrahydrolipstatin (Orlistat) (IC50 value?=?0.08?mM). The compounds have showed good selectivity toward PL and did not affect the activity of trypsin, another digestive enzyme.  相似文献   

18.
The modification of myeloperoxidase and lactoperoxidase with 2-(O-methoxypolethylene glycol)-4, 6-dichloro-s-triazine, an activated polyethylene glycol (PEG1), was investigated. The modification caused a shift of the Soret band in the light absorption spectrum, from 430 nm to 418 nm in the case of myeloperoxidase (native ferric form), and from 412 nm to 406 nm in the case of lactoperoxidase (native ferric form). PEG1-modified myeloperoxidase and PEG1-modified lactoperoxidase both failed to bind with antiserum to the respective native enzyme, but both retained respectively 4·5±0·3 per cent (mean±SE, n=5) and 0·6±0·2 per cent (mean±SE, n=5) of the activities of peroxidation of the hydrogen donor o-methoxyphenol in comparison with the native enzyme, and 1·5±0·2 per cent (mean±SE, n=5) and 1·2±0·2 per cent (mean±SE, n=5) of the activities of destruction of fuchsin basic in the presence of hydrogen peroxide and a halide, bromide. The pH dependencies of the peroxidating activities were almost the same as those of the corresponding native enzymes, but both the optimal pHs of the reactions involving the destruction of fuchsin basic were shifted by approximately 1·0 pH unit toward neutral pH compared with the respective native enzymes. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
M.J.K. Macey 《Phytochemistry》1974,13(8):1353-1358
Two different mutations in Brassica oleracea, gl5 and gl4 have been re-investigated using acetate-1-14C labelling in an attempt to define more closely the nature of the genetic blocks to wax synthesis. It has been found that gl5 is a mutation which blocks elongation in the Step C28–C30. The mutation gl4 exhibits no elongation block and could be blocked in the decarboxylation Step C30–C29. 0·1 mM TCA supplied in the culture solution of cauliflower seedlings affected the leaf surface by producing a glossy appearance similar to that induced by gl3 and gl4. At this concentration growth was not inhibited and the appearance of the plants was normal except for the surface wax. The amount of surface wax produced was about 40% of that in untreated seedlings on a leaf area basis. Slight, but significant changes in wax composition were noted, mainly involving a reduction in C30 acids and aldehydes, a slight reduction (33–29%) in alkane content, and a marked difference in chain length composition of the alkanes with C27 increased relative to C29. Over a range of concentrations from 0·1–1 mM, TCA inhibited incorporation of label from acetate-1-14C into C30 acids and aldehydes more than into C28 at concentrations 0·4–0·8 mM while label tended to accumulate in C24 and C26 acids; thus elongation C28–C30 was especially sensitive to TCA. TCA also inhibited incorporation into primary alcohols and esters almost as much as into C29 compounds. In spite of relatively specific effects on incorporation of label into longer chain lengths, the resulting block to C30 synthesis is not sufficient to make much difference to the overall rate of C29 synthesis. Both results of analysis of wax from whole plants and experiments with tissue slices in vitro indicated that the effect of TCA in reducing the glaucousness of the leaf surface is a combination of overall reduction of wax synthesis together with slight but significant changes in wax composition.  相似文献   

20.
Abstract

The acetylcholinesterase inhibitory and/or antitumour activities of amino-, thio- and ester-derivatives of avarol selected were evaluated for the first time at in vitro conditions. Avarol-3′,4′-dithioglycol (1) and avarol-4′-(3)mercaptopropionic acid (3) were shown to be the best inhibitors of the enzyme tested (0.50?µg and IC50 0.05?mM and 0.50?µg and IC50 0.12?mM, respectively), while 4′-tryptamine-avarone (9) and avarol-3′-(3)mercaptopropionic acid (2) exhibited the highest cytotoxicity against the human breast T-47D cancer cell line (IC50 0.66?µg/mL and 1.25?µg/mL, respectively). According to experimental data obtained, the sesquiterpenoid hydroquinone structure of bioactive avarol derivatives may inspire development of new pharmacologically useful substances to be used in the treatment of Alzheimer's disease and/or human breast tumour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号