首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High amphiphilicity is a hallmark of interfacial helices in membrane proteins and membrane-active peptides, such as toxins and antimicrobial peptides. Although there is general agreement that amphiphilicity is important for membrane-interface binding, an unanswered question is its importance relative to simple hydrophobicity-driven partitioning. We have examined this fundamental question using measurements of the interfacial partitioning of a family of 17-residue amidated-acetylated peptides into both neutral and anionic lipid vesicles. Composed only of Ala, Leu, and Gln residues, the amino acid sequences of the peptides were varied to change peptide amphiphilicity without changing total hydrophobicity. We found that peptide helicity in water and interface increased linearly with hydrophobic moment, as did the favorable peptide partitioning free energy. This observation provides simple tools for designing amphipathic helical peptides. Finally, our results show that helical amphiphilicity is far more important for interfacial binding than simple hydrophobicity.  相似文献   

2.
The membrane-interacting domain that precedes the transmembrane anchor of Ebola glycoprotein has been characterized. This aromatic-rich region is predicted to bind the membrane interface adopting an alpha-helical structure. Peptides representing either the Ebola glycoprotein pre-transmembrane sequence, or a 'scrambled' control with a different hydrophobic-at-interface moment, have been studied. Insertion into lipid monolayers, changes in intrinsic fluorescence and in infrared spectra demonstrated that only the wild-type peptide bound the interface under equilibrium conditions and adopted an alpha-helical conformation. The presence of the raft-associated lipid sphingomyelin did not affect membrane insertion, but it stimulated highly the membrane-destabilizing capacity of the pre-transmembrane sequence. A parallel study of the effects of the viral sequence and of melittin suggests that Ebola glycoprotein pre-transmembrane sequence might target membranes inherently prone to destabilization by lytic peptides.  相似文献   

3.
beta-amyloid peptide (Abeta) is the primary constituent of senile plaques, a defining feature of Alzheimer's disease. Aggregated Abeta is toxic to neurons, but the mechanism of toxicity remains unproven. One proposal is that Abeta toxicity results from relatively nonspecific Abeta-membrane interactions. We hypothesized that Abeta perturbs membrane structure as a function of the aggregation state of Abeta. Toward exploring this hypothesis, Abeta aggregate size and hydrophobicity were characterized using dynamic and static light scattering and 1,1-bis(4-anilino)naphthalene-5,5-disulfonic acid (bis-ANS) fluorescence. The effect of Abeta aggregation state on the membrane fluidity of unilamellar liposomes was assessed by monitoring the anisotropy of the membrane-embedded fluorescent dye, 1,6-diphenyl-1,3,5-hexatriene (DPH). Unaggregated Abeta at pH 7 did not bind bis-ANS and had little to no effect on membrane fluidity. More significantly, Abeta aggregated at pH 6 or 7 decreased membrane fluidity in a time- and dose-dependent manner. Aggregation rate and surface hydrophobicity were considerably greater for Abeta aggregated at pH 6 than at neutral pH and were strongly correlated with the extent of decrease in membrane fluidity. Prolonged (7 days) Abeta aggregation resulted in a return to near-baseline levels in both bis-ANS fluorescence and DPH anisotropy at pH 7 but not at pH 6. The addition of gangliosides to the liposomes significantly increased the DPH anisotropy response. Hence, self-association of Abeta monomers into aggregates exposes hydrophobic sites and induces a decrease in membrane fluidity. Abeta aggregate-induced changes in membrane physical properties may have deleterious consequences on cellular functioning.  相似文献   

4.
Permeabilities of several solutes through the composite membranes containing phospholipids have been measured. They were inversely proportional to the content of the phospholipids in the membrane. Both the permeability of solutes and the degree of permeability change around the phase transition temperature of the phospholipids for the hydrophobic solutes such as n-butanol and salicylamide were larger than those for the hydrophilic solutes such as amino acids and pyridoxine. These results suggest thatthe permeation path of hydrophobic solutes is different from that of hydrophilic ones. The addition of phosphatidyl ethanolamine, phosphatidyl serine, or phosphatidic acid to the composite membrane influenced the solute permeability due to the introduced negative charge and/or the change in the molecular packing of phospholipid.  相似文献   

5.
Lactose hydrolysis by β-galactosidase immobilized on two nylon membranes, differently grafted, has been studied in a bioreactor operating under isothermal and non-isothermal conditions. One membrane (M1) was obtained by chemical grafting of methylmethacrylate (MAA); the other one (M2) by a double chemical grafting: styrene (Sty) and MAA. Hexamethylenediamine was used as a spacer between the grafted membranes and the enzyme. Both membranes have been physically characterized studying their permeabilities in presence of pressure or temperature gradients. Under non-isothermal conditions, the increase in activity of membrane M2 was higher than that of membrane M1. The and β coefficients, giving the percentage of activity increase when a temperature difference of 1°C is applied across the catalytic membranes, have been calculated. Results have been discussed with reference to the greater hydrophobicity of membrane M2 with respect to membrane M1, the hydrophobicity being a prerequisite for the occurrence of the process of thermodialysis.  相似文献   

6.
The catalytic behaviour under isothermal conditions of two different membranes loaded with β-galactosidase was investigated. One membrane (M1) was constituted by a nylon sheet grafted with methylmethacrylate by means of chemical grafting. The other, (M2), was prepared by a double chemical grafting: the first one with styrene (Sty) and the second one with methylmethacrylate. Membrane activity was characterized as a function of temperature, pH and substrate concentration. The role of Sty in increasing membrane hydrophobicity has been discussed. Membrane M2 was found to be better suited for employment in non-isothermal bioreactors.  相似文献   

7.
Fish skin bacteria: Colonial and cellular hydrophobicity   总被引:1,自引:0,他引:1  
Dental plaque is a complex community of bacteria coexisting in an environment frequently limited by carbon and energy sources. UnlikeStreptococcus mutans, other oral streptococci such asS. milleri andS. sanguis have an absolute requirement for and actually consume all available arginine when grown glucose limited in a chemically defined medium. The conditions, particularly in terms of arginine concentration, under which the dental plaque bacteriaS. mutans andS. milleri would coexist under glucose-limiting conditions were investigated. The minimum level of arginine supporting optimal growth ofS. milleri was found to be ca. 50M, and above this level these strains outcompetedS. mutans. However, coexistence withS. mutans could be achieved at arginine levels of 14–40M, depending upon theS. milleri andS. mutans strains used. Under such dual limitation,S. milleri was unable to respond to glucose pulses but did respond to pulses of arginine and arginine plus glucose. One of the twoS. milleri strains did not tolerate low pH. In contrast,S. mutans did not tolerate high pH whereasS. milleri was unaffected. This is relevant to dental plaque where arginine catabolism produces a pH rise. Additionally, arginine is an important nutrient since it can be used as an energy source by some oral streptococci.  相似文献   

8.
Exposure to low pH triggers an increase in the hydrophobicity of the colicin E3 molecule. Using a [3H] Triton X-100 binding assay we have shown that the amount of detergent (at supramicellar concentrations) associated with colicin E3 increased dramatically at pH 3.8 and below. Interaction of colicin E3 with asolectin vesicles was monitored by following its cross-linking with two different photoactivatable radioactive phospholipid analogues. At neutral pH colicin E3 was cross-linked with the phospholipid probing the membrane surface whereas at pH 4.5 and below, the bacteriocin reacted with the phospholipid probing the hydrophobic core of the bilayer. With the use of phase partitioning of proteins in Triton X-114 it was shown that at acidic pH whole colicin E3 and its immunity protein segregated in the detergent phase. After trypsin digestion of the colicin-immunity complex, the N-terminal portion of E3 (T1) and the immunity partitioned in the detergent phase at low pH. In contrast, the enzymic domain of the colicin (T2) remained in the aqueous phase and was recovered in a highly active form as a consequence of its dissociation from the immunity protein. These results are discussed in relation to the mechanism of entry of colicin E3 into bacterial cells.  相似文献   

9.
The minimum hydrophobic length necessary to form a transmembrane (TM) helix in membranes was investigated using model membrane-inserted hydrophobic helices. The fluorescence of a Trp at the center of the sequence and its sensitivity to quenching were used to ascertain helix position within the membrane. Peptides with hydrophobic cores composed of poly(Leu) were compared to sequences containing a poly 1:1 Leu:Ala core (which have a hydrophobicity typical of natural TM helices). Studies varying bilayer width revealed that the poly(Leu) core peptides predominately formed a TM state when the bilayer width exceeded hydrophobic sequence length by (i.e. when negative mismatch was) up to ∼ 11-12 Å (e.g. the case of a 11-12 residue hydrophobic sequence in bilayers with a biologically relevant width, i.e. dioleoylphosphatidylcholine (DOPC) bilayers), while poly(LeuAla) core peptides formed predominantly TM state with negative mismatch of up to 9 Å (a 13 residue hydrophobic sequence in DOPC bilayers). This indicates that minimum length necessary to form a predominating amount of a TM state (minimum TM length) is only modestly hydrophobicity-dependent for the sequences studied here, and a formula that defines the minimum TM length as a function of hydrophobicity for moderately-to-highly hydrophobic sequences was derived. The minimum length able to form a stable TM helix for alternating LeuAla sequences, and that for sequences with a Leu block followed by an Ala block, was similar, suggesting that a hydrophobicity gradient along the sequence may not be an important factor in TM stability. TM stability was also similar for sequences flanked by different charged ionizable residues (Lys, His, Asp). However, ionizable flanking residues destabilized the TM configuration much more when charged than when uncharged. The ability of short hydrophobic sequences to form TM helices in membranes in the presence of substantial negative mismatch implies that lipid bilayers have a considerable ability to adjust to negative mismatch, and that short TM helices may be more common than generally believed. Factors that modulate the ability of bilayers to adjust to mismatch may strongly affect the configuration of short hydrophobic helices.  相似文献   

10.
Krishtal  O.  Ostrovskaya  O.  Moroz  L. 《Neurophysiology》2003,35(3-4):208-216
Acid-sensing ion channels (ASIC) are involved in a variety of sensory functions, including mechanoreception, nociception, and perception of acid taste, thus being considerably involved in the control of smooth musculature. It is suggested that FMRFa-related peptides can be endogenous regulators of these channels, primarily by modulating the rate of ASIC desensitization. Here we present two our findings. (I) The effect is strongly pH-dependent: The lower the pH used to activate ASIC, the greater the modulatory effect of RFa-related peptides, and (ii) in the small (nociceptive), but not in the large (mechanoceptive) primary somatosensory neurons, RFa-related peptides shift steady-state desensitization toward more acidic levels. We suggest that the pH dependence of the modulatory action of RFa-related peptides can be associated with the presence of positively charged arginine residues and their possible interactions with histidine residues in ASIC. The second effect should result in strongly increased phasic activity of nociceptors under conditions of moderate ischemia. Our results show that the RFa-related peptides are capable of changing the sensitivity of nociceptors to protons, as well as the temporal pattern of their activity. Short neuropeptides are usually the products of proteolysis of larger prohormone molecules. Interestingly, chronic pain is accompanied by a significant activation of proteases in dorsal root ganglion neurons, and RFa peptides have been found in the spinal dorsal horn of mammals. They may play a role in the modulation of the mammalian sensory inputs.  相似文献   

11.
The role of cell surface hydrophobicity in the adhesion to stainless steel (SS) of 11 wild yeast strains isolated from the ultrafiltration membranes of an apple juice processing plant was investigated. The isolated yeasts belonged to four species: Candida krusei (5 isolates), Candida tropicalis (2 isolates), Kluyveromyces marxianus (3 isolates) and Rhodotorula mucilaginosa (1 isolate). Surface hydrophobicity was measured by the microbial adhesion to solvents method. Yeast cells and surfaces were incubated in apple juice and temporal measurements of the numbers of adherent cells were made. Ten isolates showed moderate to high hydrophobicity and 1 strain was hydrophilic. The hydrophobicity expressed by the yeast surfaces correlated positively with the rate of adhesion of each strain. These results indicated that cell surface hydrophobicity governs the initial attachment of the studied yeast strains to SS surfaces common to apple juice processing plants.  相似文献   

12.
The release behavior of a periplasmic enzyme, acid phosphatase, from heat-stressed Escherichia coli cells was characterized by using kinetic analyses when the cells were treated by Triton X-100–EDTA. The hydrophobicity of the cell surface and the release-rate of the enzyme were not influenced by heat treatment at temperatures between 30 and 50°C. However, these values varied above 55°C. The release-rate constants were found to correspond to the net and local hydrophobicity of the outer membrane surface, evaluated by aqueous two-phase partitioning.  相似文献   

13.
International Journal of Peptide Research and Therapeutics - Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality...  相似文献   

14.
抗菌肽(AMP)是生物体内先天免疫系统的一个组成部分,保护机体免受致病微生物的入侵.抗菌肽具有很强的广谱抗菌活性,可抑制革兰氏阳性菌、革兰氏阴性菌、真菌和病毒的生长.为克服微生物对抗生素耐药性的问题,目前阳离子抗菌肽已被考虑作为抗生素的潜在替代品.本文将阐述抗菌肽的作用机理、选择性抗菌肽的设计及其应用.  相似文献   

15.
Protein hydrophobicity and lipid--protein interaction   总被引:1,自引:0,他引:1  
  相似文献   

16.
1. Depending on the hydrophobicity and the site specificity of an inhibitor, striking differences were found in ethanol-acetylcholinesterase (AChE)-inhibitor interactions. 2. AChE used was from electric eel and was purified by affinity chromatography. 3. Ethanol at 10-200 mM reduced the inhibitory ability of tetrabutylammonium bromide (Bu4NBr). 4. The observed reduction might be a result of Bu4NBr inhibition being partially compensated for by an ethanol activation effect. 5. In contrast to Bu4NBr, propidium and edrophonium are not involved in hydrophobic interaction with AChE. 6. Their abilities to inhibit AChE activity were enhanced by ethanol. 7. Such an enhancement could not result from combining individual perturbations from ethanol and propidium or edrophonium, since ethanol itself increased the AChE activity. 8. In the presence of ethanol, propidium which binds to the peripheral site of the enzyme remained as an uncompetitive inhibitor, while edrophonium which binds to the active site was changed from a competitive inhibitor to a mixed one. 9. The effect of ethanol was therefore greater in the inhibitor which is involved with the active-site binding. 10. Fluorescence quenching studies of propidium-bound enzyme and edrophonium-bound enzyme revealed that ethanol in the concentration less than or equal to 400 mM did not cause significant conformational change at both the peripheral and the active sites of the enzyme.  相似文献   

17.
To probe the role of the protective antigen (PA) component of anthrax toxin in toxin entry into animals cells, we examined the membrane channel-forming properties and hydrophobicity of intact and trypsin-cleaved forms of the protein at various pH values. At neutral pH neither form caused release of entrapped K+ from unilamellar lipid vesicles. At pH values below 6.0, however, K+ was rapidly released upon addition of either the nicked PA (PAN) or the 63 kDa tryptic fragment of PA (PA63), which has been implicated in the toxin entry process. Under the same conditions intact PA exhibited only weak channel-forming activity, and PA20, the complementary tryptic fragment, showed no such activity. Both PA and PA63 exhibited enhanced hydrophobicity at acidic pH values, but the enhancement was greater and the pH threshold higher with PA63. Our findings indicate that proteolytic removal of PA20 from intact PA enables the residual protein, PA63, to adopt a conformation at mildly acidic pH values that permits it to insert readily and form channels in membranes. Thus acidic conditions within endocytic vesicles may trigger membrane insertion of PA63, which in turn promotes translocation of ligated effector moieties, edema factor or lethal factor, across the vesicle membrane into the cytosol.  相似文献   

18.
Abstract

The intercalative binding of chiral tris(phenanthroline) metal complexes to DNA is stereo-selective. The enantiomeric selectivity is based upon the differential steric interactions between the two non-intercalating phenanthroline ligands of each isomer with the DNA phosphate backbone. Gel electrophoretic assays of helical unwinding, optical enrichment studies by equilibrium dialysis and luminescence titrations with separated enantiomers of (phen)3Ru2+ all indicate that the delta isomer binds preferentially to the right-handed duplex. The chiral discrimination is governed by the DNA helical asymmetry. Complete stereospecifity is seen with isomers of the bulkier RuDIP (tris-4,7-diphenylphenanthrolineruthenium(II)). While both isomers bind to Z-DNA, a poor template for discrimination, binding of Λ-RuDIP to B-DNA is precluded. These chiral complexes therefore serve as a chemical probe to distinguish left and right-handed DNA helices in solution.  相似文献   

19.
The cytoplasmic form of protein kinase C (PKC) is inactive, probably because the pseudosubstrate region in its regulatory domain blocks the substrate-binding site in its kinase domain. Calcium ions cause a translocation to the membrane: maximum activation requires a negative lipid such as phosphatidylserine (PS) and the neutral lipid diacylglycerol (DAG) but the mechanism by which PS and DAG activate PKC is unknown. Pseudosubstrate region 19-36 of PKC-beta has six basic and one acidic amino acids and region 19-29 has five basic and no acidic amino acids. Since any binding of basic residues in the pseudosubstrate region to acidic lipids in the membrane should stabilize the active form of PKC, we studied how peptides with amino acids equivalent to residues 19-36 and 19-29 of PKC-beta bound to phospholipid vesicles. We made equilibrium dialysis, filtration, and electrophoretic mobility measurements. The fraction of bound peptide is a steep sigmoidal function of the mol fraction of negative lipid in the membrane, as predicted from a simple theoretical model that assumes the basic residues provide identical independent binding sites. The proportionality constant between the number of bound peptides/area and the concentration of peptide in the bulk aqueous phase is 1 micron for a membrane with 25% negative lipid formed in 0.1 M KCl. Equivalently, the association constant of the peptide with the membrane is 10(4) M-1, or the net binding energy is 6 kcal/mol. Thus the interaction of basic residues in the pseudosubstrate region with acidic lipids in the membrane could provide 6 kcal/mol free energy towards stabilizing the active form of PKC.  相似文献   

20.
Comparative antimicrobial properties of three artificial cationic synthetic antimicrobial peptides (SAMP): (RAhaR)4AhaβA (where R is Arg, Aha is 6-aminohexanoic acid, βA is beta-alanine), (KFF)3K and R9F2 with various amphiphilic properties have been studied relative to pathogenic strains of microorganisms: Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Salmonella enterica, Gram-positive bacteria Staphylococcus aureus, and pathogenic yeast fungus Candida albicans. The selectivity index (SI) values of the peptide preparations were calculated as the ratio of the 50% cytotoxic concentration (TC50) towards eukaryotic host cells to the MIC50 values of the testing antimicrobial peptides. The studied SAMPs appeared to be the most active against the pathogenic yeast fungus C. albicans and the bacterial strains St. aureus and P. aeruginosa. The SI values in these cases exceed 40. Some assumed molecular interactions of the studied SAMPs on the microbial cells have been considered, and possible pathways to increase their antimicrobial activity have been suggested. The proposed SAMPs can serve as a basis for the design and synthesis of new promising synthetic antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号