首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receåfindings indicate that cockroaches escape in response to tactile stimulation as well as they do in response to the classic wind puff stimulus. The thoracic interneurons that receive inputs from ventral giant interneurons also respond to tactile stimulation and therefore, represent a potential site of convergence between wind and tactile stimulation as well as other sensory modalities. In this article, we characterize the tactile response of these interneurons, which are referred to as type-A thoracic interneurons (TIAs). In response to tactile stimulation of the body cuticle, TIAs typically respond with a short latency biphasic depolarization which often passes threshold for action potentials. The biphasic response is not typical of responses to wind stimulation nor of tactile stimulation of the antennae. It is also not seen in tactile responses of thoracic interneurons that are not part of the TIA group. The responses of individual TIAs to stimulation of various body locations were mapped. The left-right directional properties of TIAs are consistent with their responses to wind puffs from various different directions. Cells that respond equally well to wind from the left and right side also respond equally well to tactile stimuli on the left and right side of the animal's body. In contrast, cells that are biased to wind on one side are also biased to tactile stimulation on the same side. In general, tactile responses directed at body cuticle are phasic rather than tonic, occurring both when the tactile stimulator is depressed and released. The response reflects stimulus strength and follows repeated stimulation quite well. However, the first phase of the biphasic response is more robust during high-frequency stimulation than the second phase. TIAs also respond to antennal stimulation. However, here the response characteristics are complicated by the fact that movement of either antenna evokes descending activity in both left and right thoracic connectives. The data suggest that the TIAs make up a multimodal site of sensory convergence that is capable of generating an oriental escape turn in response to any one of several sensory cues. 1994 John Wiley & Sons, Inc.  相似文献   

2.
Tactile stimulation of an insect's abdomen evokes various behaviors including grooming and vigorous escape responses. We tested a sample of 37 tactile-sensitive abdominal interneurons for various morphological and physiological characteristics, including their ability to excite thoracic interneurons that are known to integrate wind information conducted by giant interneurons in the classical escape response. The results suggest that abdominal tactile-sensitive interneurons are heterogeneous both in anatomical and physiological properties. In general, these cells are very small interganglionic interneurons that respond to tactile stimulation at more than one abdominal segment. However, the larger population contained virtually all types of cells. Some projected anteriorly, others posteriorly, and still others projected in both directions. For most cells, the soma was on the side opposite to their axons, but in 24% of the cells it was on the same side. Patterns of dendritic arbors also varied among cells. However, tactile sensitivity was in general consistent with the morphological bias noted in dendritic branch patterns. We were able to document the existence of tactile abdominal interneurons that connect directly to thoracic interneurons involved in escape (TIAs). However, instances of demonstrated connectivity were rare. One cell that did show connectivity (AI652) was characterized in detail, and its properties were appropriate for conducting tactile signals in a directional escape system. The dendritic arbors were biased to the side that was ipsilateral to the cell's soma and axon. As a result, this cell's abdominal inputs and thoracic outputs are on the same side. This pattern is appropriate for generating the sensory fields recorded previously in TIAs. Its axon was located in the ventral median tract, which should bring it close to the integrating region of the TIAs. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 227–241, 1998  相似文献   

3.
In the escape system of the cockroach, Periplaneta americana, a population of uniquely identifiable throacic interneurons (type A or TIAs) receive information about wind via chemical synapses from a population of ventral giant interneurons (vGIs). The TIAs are involved in the integration of sensory information necessary for orienting the animal during escape. It is likely that there are times in an animal's life when it is advantageous to modify the effectiveness of synaptic transmission between the vGIs and the TIAs. Given the central position of the TIAs inthe escape system, this would greatly alter associated motor outputs. We tested the ability of octopamine, serotonin, and dopamine to modulate synaptic transmission between vGIs and TIAs. Both octopamine and dopamine significantly increased the amplitude of vGI-evoked excitatory postsynaptic potentials (EPSPs) in TIAs at 10?4?10?2 M, and 10?3 M, respectively. On the other hand, serotonin significantly decreased the vGI-evoked EPSPs in TIAs at 10?4?10?3 M. These results indicate that octopamine, serotonin, and dopamine are capable of modulating the efficacy of transmission of important neural connections within this circuit. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
The data described here complete the principal components of the cockroach wind-mediated escape circuit form cercal afferents to leg motor neurons. It was previously known that the cercal afferents excite ventral giant interneurons which then conduct information on wind stimuli to thoracic ganglia. The ventral giant interneurons connect to a large population of interneurons in the thoracic ganglia which, in turn, are capable of exciting motor neurons that control leg movements. Thoracic interneurons that receive constant short latency inputs from ventral giant interneurons have been referred to as type A thoracic interneurons (TIAs). In this paper, we demonstrate that the motor response of TIAs occurs in adjacent ganglia as well as in the ganglion of origin for the TIA. We then describe the pathway from TIAs to motor neurons in both ganglia. Our observations reveal complex interactions between thoracic interneurons and leg motor neurons. Two parallel pathways exist. TIAs excite leg motor neurons directly and via local interneurons. Latency and amplitude of post-synaptic potentials (PSPs) in motor neurons and local interneurons either in the ganglion of origin or in adjacent ganglia are all similar. However, the sign of the responses recorded in local interneurons (LI) and motor neurons varies according to the TIA subpopulation based on the location of their cell bodies. One group, the dorsal posterior group, (DPGs) has dorsal cell bodies, whereas the other group, the ventral median cells, (VMC) has ventral cell bodies. All DPG interneurons either excited postsynaptic cells or failed to show any connection at all. In contrast, all VMC interneurons either inhibited postsynaptic cells or failed to show any connection. It appears that the TIAs utilize directional wind information from the ventral giant interneurons to make a decision on the optimal direction of escape. The output connections, which project not only to cells within the ganglion of origin but also to adjacent ganglia and perhaps beyond, could allow this decision to be made throughout the thoracic ganglia as a single unit. However, nothing in these connections indicates a mechanism for making appropriate coordinated leg movements. Because each pair of legs plays a unique role in the turn, this coordination should be controlled by circuits didicated to each leg. We suggest that this is accomplished by local interneurons between TIAs and leg motor neurons.  相似文献   

5.
In the cockroach, a population of thoracic interneurons (TIs) receives direct inputs from a population of ventral giant interneuons (vGIs). Synaptic potentials in type-A TIs (TIAs) follow vGI action potentials with constant, short latencies at frequencies up to 200 Hz. These connections are important in the integration of directional wind information involved in determining an oriented escape response. The physiological and biochemical properties of these connections that underlie this decision-making process were examined. Injection of hyperpolarizing or depolarizing current into the postsynaptic TIAs resulted in alterations in the amplitude of the postsynaptic potential (PSP) appropriate for a chemical connection. In addition, bathing cells in zero-calcium, high magnesium saline resulted in a gradual decrement of the PSP, and ultimately blocked synaptic transmission, reversibly. Single-cell choline acetyltransferase (ChAT) assays of vGI somata were performed. These assays indicated that the vGIs can synthesize acetylcholine. Further more, the pharmacological specificity of transmission at the vGI to TIA connections was similar to that previously reported for nicotinic, cholinergic synapses in insects, suggesting that the transmitter released by vGIs at these sypapses is acetylcholine. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
1. In a tethered cockroach (Periplaneta americana) whose wings have been cut back to stumps, it is possible to elicit brief sequences of flight-like activity by puffing wind on the animal's body. 2. During such brief sequences, rhythmic bursts of action potentials coming from the thorax at the wingbeat frequency, descend the abdominal nerve cord to the last abdominal ganglion (A6). This descending rhythm is often accompanied by an ascending rhythm (Fig. 2). 3. Intracellular recording during flight-like activity from identified ascending giant interneurons, and from some unidentified descending axons in the abdominal nerve cord, shows that: (a) ventral giant interneurons (vGIs) remain silent (Fig. 3); (b) dorsal giant interneurons (dGIs) are activated at the onset of the flight-like activity and remain active sporadically throughout the flight sequence (Fig.4); (c) some descending axons in the abdominal nerve cord show rhythmic activity phase-locked to the flight rhythm (Fig. 5). 4. Also during such brief sequences, the cercal nerves, running from the cerci (paired, posterior, wind sensitive appendages) to the last abdominal ganglion, show rhythmic activity at the wingbeat frequency (Fig. 6). This includes activity of some motor axons controlling vibratory cercal movements and of some sensory axons. 5. More prolonged flight sequences were elicited in cockroaches whose wings were not cut and which flew in front of a wind tunnel (Fig. 1B). 6. In these more prolonged flight sequences, the number of ascending spikes per burst was greater than that seen in the wingless preparation (Fig. 8; compare to Fig. 2). Recordings from both ventral and dorsal GIs show that: in spite of the ongoing wind from both the tunnel and the beating wings, which is far above threshold for the vGIs in a resting cockroach, the vGIs are entirely silent during flight. Moreover, the vGIs response to strong wind puffs that normally evoke maximal GI responses is reduced by a mean of 86% during flight (Fig. 9). The dGIs are active in a strong rhythm (Figs. 11 and 12). 7. Three sources appear to contribute to the ascending dGI rhythm (1) the axons carrying the rhythmic descending bursts; (2) the rhythmic sensory activity resulting from the cercal vibration; and (3) the sensory activity resulting from rhythmic wind gusts produced by the wingbeat and detected by the cerci. The contribution of each source has been tested alone while removing the other two (Figs. 13 and 14). Such experiments suggest that all 3 feedback loops are involved in rhythmically exciting the dGIs (Fig. 15).  相似文献   

7.
1. The escape behavior of the cockroach, Periplaneta americana, is known to be modulated under various behavioral conditions (Camhi and Volman 1978; Camhi and Nolen 1981; Camhi 1988). Some of these modulatory effects occur in the last abdominal ganglion (Daley and Delcomyn 1981a, b; Libersat et al. 1989) and others in the thoracic ganglia (Camhi 1988). Neuromodulator substances are known to underlie behavioral modulation in various animals. Therefore, we have sought to determine whether topical application of putative neuromodulators of the escape circuit enhance or depress this circuit, and whether these effects differ in the last abdominal vs. the thoracic ganglia. 2. Topical application of the biogenic amines serotonin and dopamine to the metathoracic ganglion modulates the escape circuitry within this ganglion; serotonin decreases and dopamine enhances the response of leg motoneurons to activation of interneurons in the abdominal nerve cord by electrical or wind stimulation. 3. The neuropil of the thoracic ganglia contains many catecholamine-histofluorescent processes bearing varicosities, providing a possible anatomical substrate for dopamine release sites. 4. Topical application of octopamine to the terminal abdominal ganglion enhances the response of abdominal interneurons to wind stimulation of the cerci. In contrast, serotonin and dopamine have no effect at this site. 5. It is proposed that release of these biogenic amines may contribute to the known modulation of the cockroach escape response.  相似文献   

8.
A number of thoracic interneurons (TIs) have been found to receive inputs from ventral giant interneurons (vGIs). Each of these cells responds to wind with short latency depolarizations. The previous paper described response properties of several TIs to wind stimuli, including those excited by vGIs. The data showed a correlation between the shape of the TI's wind fields and its morphology. The presence of ventral branches located near the midline of the ganglion predicts a strong response to wind on that side. These ventral median (VM) branches are in the proper location to permit overlap with processes from vGIs. Here we describe the patterns of connections between individual vGIs and 13 of the thoracic interneurons located in the meso- and metathoracic ganglia. A correlation was found between the presence of VM branches and excitation by vGIs. TIs were only excited by vGIs on the side(s) on which VM branches exist. However, presence of a VM branch does not imply that all vGIs on that side make connections with the TI. Summation was found between various vGIs that excited each individual thoracic interneuron. In unilateral thoracic interneurons, no sign of inhibition was found from vGIs on the sides opposite that which contained excitatory vGI axons. Neither was there any evidence of inhibition from dorsal giant interneurons. In addition preliminary evidence indicated that left-right homologues do not inhibit one another. Thus, the data suggest that directional wind fields are primarily the result of selective connection from specific vGIs.  相似文献   

9.
We have investigated the structural organization of the wind-sensitive giant interneurons in the thoracic ganglia of adult American cockroaches. These seven bilaterally paired interneurons have long been thought to play a role in directing the wind-elicited escape response of the animal. Each of the giant interneurons was labeled individually by intracellular injection of cobaltic hexamine chloride. An individual giant interneuron could be reliably identified from animal to animal based on its branching pattern in thoracic ganglia. The axons of the giant interneurons are situated on each side of the nerve cord in two recognizable subgroups. Comparisons of the axonal arbors of the dorsal and ventral subgroups showed that they project into distinct but partly overlapping regions of thoracic ganglia. Three of the giant interneurons were found to have axonal arbors that cross the longitudinal midline of thoracic and abdominal ganglia. Bilateral pairs of these giant interneurons were labeled concomitantly, and many of the individual neurites from these cells appeared to be closely apposed. All these morphological characteristics are discussed in relation to the connectivity and functional significance of the giant interneurons.  相似文献   

10.
In the escape behavior of the cockroach, all six legs begin to make directed movements nearly simultaneously. The sensory stimulus that evokes these leg movements is a wind puff. Posterior wind receptors excite giant interneurons that carry a multi-cellular code for stimulus direction — and thus for turn direction-to the three thoracic ganglia, which innervate the three pairs of legs. We have attemptd to discriminate among various possible ways that the directional information in the giant interneurons could be distributed to each leg's motor circuit. Do the giant interneurons, for instance, inform separately each thoracic ganglion of wind direction? Or is there one readout system that conveys this information to all three ganglia, and if so, might the identified thoracic interneurons, which are postsynaptic to the giant interneurons, subserve this function? We made mid-sagittal lesions in one or two thoracic ganglia, thus severing the initial segments of all the known thoracic interneurons in these ganglia, and thus causing their projection axons to the other thoracic ganglia to degenerate. This lesion did not sever the giant interneurons, however (Fig. 5). Following such lesions, the legs innervated by the intact thoracic ganglia made normally directed leg movements (Figs. 4, 6, 7). Thus, the projection axons of the thoracic interneurons are not necessary for normal leg movements. Rather, the giant interneurons appear to specify to each thoracic ganglion in which direction to move the pair of legs it innervates.  相似文献   

11.
Antisera were raised against leucokinin IV, a member of the leucokinin peptide family. Immunohistochemical localization of leucokinin immunoreactivity in the brain of the cockroach Nauphoeta cinerea revealed neurosecretory cells in the pars intercerebralis and pars lateralis, several bilateral pairs of interneurons in the protocerebrum, and a group of interneurons in the optic lobe. Several immunoreactive interneurons were found in the thoracic ganglia, while the abdominal ganglia contained prominent immunoreactive neurosecretory cells, which projected to the lateral cardiac nerve. The presence of leucokinins in the abdominal nerve cord was confirmed by HPLC combined with ELISA. Leucokinin-immunoreactive neurosecretory cells were also found in the pars intercerebralis of the cricket Acheta domesticus and the mosquito Aedes aegypti, but not in the locust Schistocerca americana or the honey bee Apis mellifera. However, all these species have leucokinin-immunoreactive neurosecretory cells in the abdominal ganglia. The neurohemal organs innervated by abdominal leucokinin-immunoreactive cells were different in each species.  相似文献   

12.
In a multiganglionic preparation of the lobster abdominal nerve cord, composed of the first through fifth ganglia (A1-A5) and attached second swimmeret, tactile stimulation of the cuticular surface of the swimmeret initiates a postural motor program in A2 for abdominal extension, whereas deflection of feathered hair sensilla that fringe the swimmeret rami does not affect postural motor activity recorded from A2 (Kotak and Page, 1986a). This report demonstrates that partial isolation of A2 from adjacent abdominal ganglia by sectioning the A1-A2 or the A2-A3 connectives both increases the strength of the extension response evoked by cuticular stimulation and disinhibits a postural flexion inhibition response initiated by feathered hair stimulation. Complete isolation of A2, by cutting the A1-A2 and the A2-A3 connectives, further increases the strength of these postural responses. Intersegmental inhibition of these responses originates in the ganglia adjacent to A2, since mechanoresponsiveness of A2 is not affected by resection of a more distant connective (A3-A4). These results provide evidence for the presence in adjacent abdominal ganglia of intersegmental interneurons that regulate the access of swimmeret sensory activity to the postural motor neurons in A2.  相似文献   

13.
Dorsal unpaired median (DUM) cells in orthopteran insects are known to contain the neuromodulatory substance octopamine, and DUM cells with peripheral axons augment synaptic activity at neuromuscular junctions. One of the most studied systems in the cockroach is the giant interneuron (GI) system which controls the initial movements of a wind-mediated escape response. Our data demonstrate that DUM cells that are restricted to the central nervous system (DUM interneurons) receive inputs from ventral giant interneurons (vGIs) but not from dorsal giant interneurons (dGIs). In contrast, DUM cells that have peripheral axons consistently fail to be excited by any giant interneurons. The DUM interneurons are excited by vGIs on both sides of the CNS and, when the vGIs are excited in pairs, summation occurs. Wind fields that have been generated for two of the DUM interneurons are omnidirectional. These data, taken along with the known association of DUM cells with the neuromodulatory substance octopamine, suggest that the DUM interneurons may act to modulate central synapses.  相似文献   

14.
We have already identified central neurons for cardioinhibition and cardioacceleration in Bathynomus, an isopod crustacean. The 1st thoracic ganglion (TG1) has cardioinhibitory neurons, which we call CIs, while the 2nd and 3rd thoracic ganglia (TG2 and TG3) have cardioacceleratory neurons, which we call CA1s and CA2s. We examined neuronal pathways for cardioinhibitory reflexes in whole animal preparations, using intracellular and extracellular recording methods. Cardiac inhibition in response to a variety of external stimuli was mediated by activation of CIs and inhibition of both CAs. When preparations had the ventral nerve cord intact, CIs were activated by excitatory postsynaptic potentials and CAs were inhibited by inhibitory postsynaptic potentials in response to tactile stimuli applied to sensilla setae on appendages and afferent stimuli applied to ganglionic roots of the thoracic ganglia. However, stimulation of ganglionic nerve roots of TG2 and TG3, or tactile stimulation of the body surface, failed to evoke inhibition of CAs in preparations in which both the cerebral ganglion and TG1 had been excised. These results suggest that TG1 is an indispensable central region for the excitation of CI and for inhibition of CA neurons, induced by tactile stimuli and by stimuli applied to nerve roots of TG2 and TG3.  相似文献   

15.
A group of six dorsal unpaired median (DUM) neurons of the suboesophageal ganglion (SOG) of locusts was studied with neuroanatomical and electrophysiological techniques. The neurons are located posteriorly in the SOG and have axons that descend into the ganglia of the ventral nerve cord, some as far as the terminal abdominal ganglion. Within thoracic ganglia the neurons have profuse dendritic ramifications in many neuropiles, including ventral sensory neuropiles. Based on their projection patterns three different morphological types of neurons can be distinguished. These neurons receive excitatory inputs through sensory pathways that ascend from the thoracic ganglia and are activated by limb movements. They may be involved in the modulation of synaptic transmission in thoracic ganglia.  相似文献   

16.
On isolated abdominal nervous chain of the cockroach studies have been made of the responses of motoneurones of the thoracic ganglion to electrical stimulation of afferent axons of the leg nerve under normal conditions and during application of an anticholinesterase drug, GD-7. Depending on the type of stimulated axons, monosynaptic response, as well as polysynaptic phasic and tonic responses of motoneurones were recorded. A scheme of activation of motoneurones is suggested which evokes slow contractions of muscles in cockroach extremities.  相似文献   

17.
Summary In spiders the bulk of the central nervous system (CNS) consists of fused segmental ganglia traversed by longitudinal tracts, which have precise relationships with sensory neuropils and which contain the fibers of large plurisegmental interneurons. The responses of these interneurons to various mechanical stimuli were studied electrophysiologically, and their unilateral or bilateral structure was revealed by intracellular staining. Unilateral interneurons visit all the neuromeres on one side of the CNS. They receive mechanosensory input either from a single leg or from all ipsilateral legs via sensory neurons that invade leg neuromeres and project into specific longitudinal tracts. The anatomical organization of unilateral interneurons suggests that their axons impart their information to all ipsilateral leg neuromeres. Bilateral interneurons are of two kinds, symmetric and asymmetric neurons. The latter respond to stimulation of all legs on one side of the body, having their dendrites amongst sensory tracts of the same side of the CNS. Anatomical evidence suggests that their terminals invade all four contralateral leg neuromeres. Bilaterally symmetrical plurisegmental interneurons have dendritic arborizations in both halves of the fused ventral ganglia. They respond to the stimulation of any of the 8 legs. A third class of cells, the ascending neurons have unilateral or bilateral dendritic arborizations in the fused ventral ganglia and show blebbed axons in postero-ventral regions of the brain. Their response characteristics are similar to those of other plurisegmental interneurons. Descending neurons have opposite structural polarity, arising in the brain and terminating in segmental regions of the fused ventral ganglia. Descending neurons show strong responses to visual stimulation. Approximately 50% of all the recorded neurons respond exclusively to stimulation of a single type of mechanoreceptor (either tactile hairs, or trichobothria, or slit sensilla), while the rest respond to stimulation of a variety of sensilla. However, these functional differences are not obviously reflected by the anatomy. The functional significance of plurisegmental interneurons is discussed with respect to sensory convergence and the coordination of motor output to the legs. A comparison between the response properties of certain plurisegmental interneurons and their parent longitudinal tracts suggests that the tracts themselves do not reflect a modality-specific organization.Abbreviations BPI bilateral plurisegmental interneuron - CNS central nervous system - FVG fused ventral ganglia - LT longitudinal tract - PI plurisegmental interneuron - PSTH peristimulus timehistogram - UPI unilateral plurisegmental interneuron  相似文献   

18.
A detailed morphological study was performed to localize the probable sites of connections between two identified populations of interneurons (ventral giant interneurons and type-A thoracic interneurons) in the cockroach. Type-A thoracic interneurons (TIAS) appear to play an important role in orienting the cockroach during wind-mediated escape. However, their large number, approximately 100 neurons, precludes analyzing each cell's role electrophysiologically. The TIAS are characterized by a prominent branch located on one or both sides of the ventral median (VM) region of the thoracic ganglion in which their soma resides. The presence of this ventral median branch can be used to predict connectivity with left or right ventral giant interneurons (vGIs) (Ritzmann and Pollack, 1988) and is correlated with the TIA's directional response to wind (Westin, Ritzmann, and Goddard, 1988), suggesting that this is the locus of synaptic connection. Two approaches were employed to address this hypothesis. Morphological overlap of differentially labelled cells (ethidium bromide, Lucifer Yellow) was examined at the light microscopic level to locate areas of possible synaptic contact. Experiments were also performed in which one-half of the vGI input to the TIAs was surgically removed early in postembryonic development. Although no changes in the overall branching pattern were observed, the VM branches on the operated side were significantly shorter than were those on the unoperated side. Thoracic interneurons that do not receive inputs from vGIs were unaffected by this surgery. The data reported here thereby confirm previous observations by localizing the vGI inputs specifically to the VM branch, and provide a morphological cue for predicting connectivity and function.  相似文献   

19.
The tobacco hornworm, Manduca sexta, undergoes several larval molts before transforming into a pupa and then an adult moth. Each molt culminates in ecdysis, when the old cuticle is shed. Prior to each larval ecdysis, the old cuticle is loosened by pre-ecdysis behavior, which consists of rhythmic compressions that are synchronous along the abdomen and on both body sides, and rhythmic retractions of the abdominal prolegs. Both pre-ecdysis and ecdysis behaviors are triggered by a peptide, eclosion hormone. The aim of the present study was to investigate the neural circuitry underlying larval preecdysis behavior. The pre-ecdysis motor pattern was recorded in isolated nerve cords from eclosion hormone-treated larvae, and the effects of connective transections and ionic manipulations were tested. Our results suggest that the larval pre-ecdysis compression motor pattern is coordinated and maintained by interneurons in the terminal abdominal ganglion that ascend the nerve cord without chemical synaptic relays; these interneurons make bilateral, probably monosynaptic, excitatory connections with identified pre-ecdysis motor neurons throughout the abdominal nerve cord. This model of the organization of the larval pre-ecdysis motor pattern should facilitate identification of the relevant interneurons, allowing future investigation of the neural basis of the developmental weakening of the pre-ecdysis motor pattern that accompanies the larval-pupal transformation.Abbreviations A3, A4... abdominal ganglia 3, 4... - AT terminal abdominal ganglion - ALE anterior lateral external muscle - DN dorsal nerve - DNA anterior branch of the dorsal nerve - DNL lateral branch of the dorsal nerve - DNP posterior branch of the dorsal nerve - EH eclosion hormone - TP tergopleural muscle - VN ventral nerve - VNA anterior branch of the ventral nerve - VNL lateral branch of the ventral nerve - VNP posterior branch of the ventral nerve  相似文献   

20.
In the escape system of the cockroach, Periplaneta americana, a population of uniquely identifiable thoracic interneurons (type A or TIAs) receive information about wind via chemical synapses from a population of ventral giant interneurons (vGIs). The TIAs are involved in the integration of sensory information necessary for orienting the animal during escape. It is likely that there are times in an animal's life when it is advantageous to modify the effectiveness of synaptic transmission between the vGIs and the TIAs. Given the central position of the TIAs in the escape system, this would greatly alter associated motor outputs. We tested the ability of octopamine, serotonin, and dopamine to modulate synaptic transmission between vGIs and TIAs. Both octopamine and dopamine significantly increased the amplitude of vGI-evoked excitatory postsynaptic potentials (EPSPs) in TIAs at 10(-4)-10(-2) M, and 10(-3) M, respectively. On the other hand, serotonin significantly decreased the vGI-evoked EPSPs in TIAs at 10(-4)-10(-3) M. These results indicate that octopamine, serotonin, and dopamine are capable of modulating the efficacy of transmission of important neural connections within this circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号