首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
SJÖSTRÖM, C DAVID, LAUREN LISSNER, LARS SJÖSTROM. Relationships between changes in body composition and changes in cardiovascular risk factors: The SOS Intervention Study. Relationships between 2-year changes in body composition (estimated from computed tomography-validated anthropometry based on sagittal trunk diameter, weight, and height), adipose tissue (AT) distribution, and cardiovascular risk factors (blood pressure, lipids, glucose, insulin, uric acid) were examined in 842 treated adults with severe obesity with weight changes from ?95. 5 to +30. 6 kg. Although the change (Δ) of visceral AT mass (expressed in % total AT) for a given change in body mass index (ΔBMI) was 6-fold larger in men than in women, Δwaist and Δwaist/hip were similar in both sexes. In men, risk factor changes were similarly related to Awaist, Abodyweight, and ΔBMI, whereas in women, Δbodyweight seemed to be the single independent variable with the highest explanatory power. In multivariate regressions adjusted for ΔBMI and baseline conditions, Δvisceral AT mass was more strongly associated with risk factor changes than were Δwaist and ?waist/hip. When using a three-compartment model (lean body mass, subcutaneous and visceral AT masses) plus neck and thigh girths (indicators of subcutaneous AT distribution), risk factor changes were related both to ?subcutaneous and ?visceral AT masses but not to Δlean body mass. In agreement with cross-sectional findings, Δneck was positively and Δthigh was negatively related to some risk factor changes. Thus, the use of waist as a single risk factor indicator seems less effective for epidemiological studies than the simple anthropometric measures presented here, which are able to separate the effects of visceral AT mass, subcutaneous AT mass, and subcutaneous AT distribution on metabolic parameters under both cross-sectional and longitudinal conditions.  相似文献   

2.
3.
Abnormal liver tests, as well as morphological changes in the liver, are frequent among obese patients. Other frequent disturbances are visceral fat accumulation, insulin resistance, non-insulin-dependent diabetes mellitus (NIDDM), hypertriglyceridemia, and hypertension; these are a set of aberrations known as the metabolic syndrome. In order to investigate a possible relationship between the metabolic syndrome and impaired liver status we examined associations between liver tests, metabolic variables (insulin, glucose, and triglycerids), body composition and nutrition in 1083 men (BMI 28.8–63.8 kg/m2) and 1367 women (BMI 26.7–68.0 kg/m2) in the ongoing intervention study of Swedish Obese Subjects (SOS). Standard biochemical techniques were used to assess liver status and metabolic variables. Lean body mass (LBM) and masses of visceral and subcutaneous adipose tissue (AT) were estimated by means of computed tomography (CT) calibrated anthropometric equations. In both genders aspartate aminotransferase and alanine aminotransferase were, or tended to be, positively correlated to fasting serum insulin, visceral AT (women), and alcohol intake. In women, the aminotransferases were also correlated with fasting blood glucose. In both genders alkaline phosphatase was, or tended to be, positively associated with visceral AT, insulin (women), and glucose. Bilirubin was negatively correlated to insulin and visceral AT in men and women. Additional multivariate analyses indicated that alcohol had less explanatory power than serum insulin for the examined liver tests, especially among women. These results suggest that pathological liver tests in the obese may represent an expression of the metabolic syndrome.  相似文献   

4.
Accurate methods for assessing body composition in subjects with obesity and anorexia nervosa (AN) are important for determination of metabolic and cardiovascular risk factors and to monitor therapeutic interventions. The purpose of our study was to assess the accuracy of dual‐energy X‐ray absorptiometry (DXA) for measuring abdominal and thigh fat, and thigh muscle mass in premenopausal women with obesity, AN, and normal weight compared to computed tomography (CT). In addition, we wanted to assess the impact of hydration on DXA‐derived measures of body composition by using bioelectrical impedance analysis (BIA). We studied a total of 91 premenopausal women (34 obese, 39 with AN, and 18 lean controls). Our results demonstrate strong correlations between DXA‐ and CT‐derived body composition measurements in AN, obese, and lean controls (r = 0.77–0.95, P < 0.0001). After controlling for total body water (TBW), the correlation coefficients were comparable. DXA trunk fat correlated with CT visceral fat (r = 0.51–0.70, P < 0.0001). DXA underestimated trunk and thigh fat and overestimated thigh muscle mass and this error increased with increasing weight. Our study showed that DXA is a useful method for assessing body composition in premenopausal women within the phenotypic spectrum ranging from obesity to AN. However, it is important to recognize that DXA may not accurately assess body composition in markedly obese women. The level of hydration does not significantly affect most DXA body composition measurements, with the exceptions of thigh fat.  相似文献   

5.
It is well known that visceral adipose tissue (VAT) is associated with insulin resistance (IR). Considerable debate remains concerning the potential positive effect of thigh subcutaneous adipose tissue (TSAT). Our objective was to observe whether VAT and TSAT are opposite, synergistic or additive for both peripheral and hepatic IR. Fifty-two volunteers (21 male/31 female) between 30 and 75 years old were recruited from the general population. All subjects were sedentary overweight or obese (mean BMI 33.0 ± 3.4 kg/m(2)). Insulin sensitivity was determined by a 4-h hyperinsulinemic-euglycemic clamp with stable isotope tracer dilution. Total body fat and lean body mass were determined by dual X-ray absorptiometry. Abdominal and mid-thigh adiposity was determined by computed tomography. VAT was negatively associated with peripheral insulin sensitivity, while TSAT, in contrast, was positively associated with peripheral insulin sensitivity. Subjects with a combination of low VAT and high TSAT had the highest insulin sensitivity, subjects with a combination of high VAT and low TSAT were the most insulin resistant. These associations remained significant after adjusting for age and gender. These data confirm that visceral excess abdominal adiposity is associated with IR across a range of middle-age to older men and women, and further suggest that higher thigh subcutaneous fat is favorably associated with better insulin sensitivity. This strongly suggests that these two distinct fat distribution phenotypes should both be considered in IR as important determinants of cardiometabolic risk.  相似文献   

6.
We measured whole body and regional lipolytic and adipose tissue blood flow (ATBF) sensitivity to epinephrine in 8 lean [body mass index (BMI): 21 +/- 1 kg/m(2)] and 10 upper body obese (UBO) women (BMI: 38 +/- 1 kg/m(2); waist circumference >100 cm). All subjects underwent a four-stage epinephrine infusion (0.00125, 0.005, 0.0125, and 0.025 microgram. kg fat-free mass(-1). min(-1)) plus pancreatic hormonal clamp. Whole body free fatty acid (FFA) and glycerol rates of appearance (R(a)) in plasma were determined by stable isotope tracer methodology. Abdominal and femoral subcutaneous adipose tissue lipolytic activity was determined by microdialysis and (133)Xe clearance methods. Basal whole body FFA R(a) and glycerol R(a) were both greater (P < 0.05) in obese (449 +/- 31 and 220 +/- 12 micromol/min, respectively) compared with lean subjects (323 +/- 44 and 167 +/- 21 micromol/min, respectively). Epinephrine infusion significantly increased FFA R(a) and glycerol R(a) in lean (71 +/- 21 and 122 +/- 52%, respectively; P < 0.05) but not obese subjects (7 +/- 6 and 39 +/- 10%, respectively; P = not significant). In addition, lipolytic and ATBF sensitivity to epinephrine was blunted in abdominal but not femoral subcutaneous adipose tissue of obese compared with lean subjects. We conclude that whole body lipolytic sensitivity to epinephrine is blunted in women with UBO because of decreased sensitivity in upper body but not lower body subcutaneous adipose tissue.  相似文献   

7.
Objective: To examine cross‐sectionally the influence of hormone replacement therapy (HRT) on the relationship between body composition and insulin sensitivity (Si). Research Methods and Procedures: Subjects were 57 early postmenopausal white women, 33 receiving HRT and 24 controls. Body composition was estimated using DXA and computed tomography scans at the abdomen and mid‐thigh. Si was assessed by a frequently sampled intravenous glucose tolerance test with minimal model analysis. Results: Compared with nonusers, HRT users had lower visceral adipose tissue, fasting serum glucose, and fasting insulin. Total body fat and unadjusted Si did not differ between groups. Visceral adipose tissue mass (VATM) was the only body‐fat compartment significantly associated with Si (r2 = 0.43, p < 0.0001) in a model including total‐body fat, upper‐trunk fat, subcutaneous abdominal fat mass, leg fat, and mid‐thigh low‐density lean tissue. Lean body mass was positively correlated with Si among HRT users and tended to be negatively correlated among nonusers. HRT status also affected the relationship between VATM and Si such that, relative to nonusers, HRT users had lower Si across lower VATM levels, but higher Si across higher VATM. Discussion: These results suggest that in postmenopausal women, VATM is uniquely related to Si. HRT affects the relationship between VATM and Si and between lean body mass and Si. These interactions should be considered in future studies.  相似文献   

8.
We examined the independent relationships among various visceral and abdominal subcutaneous adipose tissue (AT) depots, glucose tolerance, and insulin sensitivity in 89 obese men. Measurements included an oral glucose tolerance test (OGTT), glucose disposal by euglycemic clamp, and abdominal and nonabdominal (e.g., peripheral) AT by magnetic resonance imaging (MRI). OGTT glucose and glucose disposal rates were related (P < 0.05) to visceral AT (r = 0.50 and -0.41, respectively). These observations remained significant (P < 0.05) after control for nonabdominal and abdominal subcutaneous AT, and maximal O(2) consumption (VO(2 max)). Abdominal subcutaneous AT was not a significant correlate (P > 0.05) of any metabolic variable after control for nonabdominal and visceral AT and VO(2 max). Division of abdominal subcutaneous AT into deep and superficial depots and visceral AT into intra- and extraperitoneal AT depots did not alter the observed relationships. Further analysis matched two groups of men for abdominal subcutaneous AT but also for low and high visceral AT. Men with high visceral AT had higher OGTT glucose values and lower glucose disposal rates compared with those with low visceral AT values (P < 0.05). A similar analysis performed on two groups of men matched for visceral AT but also for high and low abdominal subcutaneous AT revealed no statistically different values for any metabolic variable (P > 0.10). In conclusion, visceral AT alone is a strong correlate of insulin resistance independent of nonabdominal and abdominal subcutaneous AT and cardiovascular fitness. Subdivision of visceral and abdominal subcutaneous AT by MRI did not provide additional insight into the relationship between abdominal obesity and metabolic risk in obese men.  相似文献   

9.
Genome wide association studies revealed an association of the single nucleotide polymorphism rs11708067 within the ADCY5 gene—encoding adenylate cyclase 5—with increased type 2 diabetes (T2D) risk and higher fasting glucose. However, it remains unclear whether the association between ADCY5 variants and glycemic traits may involve adipose tissue (AT) related mechanisms. We therefore tested the hypothesis that ADCY5 mRNA expression in human and mouse AT is related to obesity, fat distribution, T2D in humans and high fat diet (HFD) in mice. We measured ADCY5 mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 244 individuals with a wide range of body weight and parameters of hyperglycemia, which have been genotyped for rs11708067. In addition, AT ADCY5 mRNA was assessed in C57BL/6NTac which underwent a 10 weeks standard chow (n = 6) or high fat diet (HFD, n = 6). In humans, visceral ADCY5 expression is significantly higher in obese compared to lean individuals. ADCY5 expression correlates with BMI, body fat mass, circulating leptin, fat distribution, waist and hip circumference, but not with fasting plasma glucose and HbA1c. Adcy5 expression in mouse AT is significantly higher after a HFD compared to chow (p<0.05). Importantly, rs11708067 is not associated with ADCY5 mRNA expression levels in either fat depot in any of the genetic models tested. Our results suggest that changes in AT ADCY5 expression are related to obesity and fat distribution, but not with impaired glucose metabolism and T2D. However, altered ADCY5 expression in AT does not seem to be the mechanism underlying the association between rs11708067 and increased T2D risk.  相似文献   

10.
Age‐related increases in ectopic fat accumulation are associated with greater risk for metabolic and cardiovascular diseases, and physical disability. Reducing skeletal muscle fat and preserving lean tissue are associated with improved physical function in older adults. PPARγ‐agonist treatment decreases abdominal visceral adipose tissue (VAT) and resistance training preserves lean tissue, but their effect on ectopic fat depots in nondiabetic overweight adults is unclear. We examined the influence of pioglitazone and resistance training on body composition in older (65–79 years) nondiabetic overweight/obese men (n = 48, BMI = 32.3 ± 3.8 kg/m2) and women (n = 40, BMI = 33.3 ± 4.9 kg/m2) during weight loss. All participants underwent a 16‐week hypocaloric weight‐loss program and were randomized to receive pioglitazone (30 mg/day) or no pioglitazone with or without resistance training, following a 2 × 2 factorial design. Regional body composition was measured at baseline and follow‐up using computed tomography (CT). Lean mass was measured using dual X‐ray absorptiometry. Men lost 6.6% and women lost 6.5% of initial body mass. The percent of fat loss varied across individual compartments. Men who were given pioglitazone lost more visceral abdominal fat than men who were not given pioglitazone (?1,160 vs. ?647 cm3, P = 0.007). Women who were given pioglitazone lost less thigh subcutaneous fat (?104 vs. ?298 cm3, P = 0.002). Pioglitazone did not affect any other outcomes. Resistance training diminished thigh muscle loss in men and women (resistance training vs. no resistance training men: ?43 vs. ?88 cm3, P = 0.005; women: ?34 vs. ?59 cm3, P = 0.04). In overweight/obese older men undergoing weight loss, pioglitazone increased visceral fat loss and resistance training reduced skeletal muscle loss. Additional studies are needed to clarify the observed gender differences and evaluate how these changes in body composition influence functional status.  相似文献   

11.
The development of metabolic complications of obesity has been associated with the existence of depot-specific differences in the biochemical properties of adipocytes. The aim of this study was to investigate, in severely obese men and women, both gender- and depot-related differences in lipoprotein lipase (LPL) expression and activity, as well as the involvement of endocrine and biometric factors and their dependence on gender and/or fat depot. Morbidly obese, nondiabetic, subjects (9 men and 22 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m(2) who had undergone abdominal surgery were studied. Both expression and activity of LPL and leptin expression were determined in adipose samples from subcutaneous and visceral fat depots. In both men and women, visceral fat showed higher LPL mRNA levels as well as lower ob mRNA levels and tissue leptin content than the subcutaneous one. In both subcutaneous and visceral adipose depots, women exhibited higher protein content, decreased fat cell size and lower LPL activity than men. The gender-related differences found in abdominal fat LPL activity could contribute to the increased risk for developing obesity-associated diseases shown by men, even in morbid obesity, in which the massive fat accumulation could mask these differences. Furthermore, the leptin content of fat depots as well as plasma insulin concentrations appear in our population as the main determinants of adipose tissue LPL activity, adjusted by gender, depot and BMI.  相似文献   

12.
The effect of obesity on regional skeletal muscle and adipose tissue amino acid metabolism is not known. We evaluated systemic and regional (forearm and abdominal subcutaneous adipose tissue) amino acid metabolism, by use of a combination of stable isotope tracer and arteriovenous balance methods, in five lean women [body mass index (BMI) <25 kg/m(2)] and five women with abdominal obesity (BMI 35.0-39.9 kg/m(2); waist circumference >100 cm) who were matched on fat-free mass (FFM). All subjects were studied at 22 h of fasting to ensure that the subjects were in net protein breakdown during this early phase of starvation. Leucine rate of appearance in plasma (an index of whole body proteolysis), expressed per unit of FFM, was not significantly different between lean and obese groups (2.05 +/- 0.18 and 2.34 +/- 0.04 micromol x kg FFM(-1) x min(-1), respectively). However, the rate of leucine release from forearm and adipose tissues in obese women (24.0 +/- 4.8 and 16.6 +/- 6.5 nmol x 100 g(-1) x min(-1), respectively) was lower than in lean women (66.8 +/- 10.6 and 38.6 +/- 7.0 nmol x 100 g(-1) x min(-1), respectively; P < 0.05). Approximately 5-10% of total whole body leucine release into plasma was derived from adipose tissue in lean and obese women. The results of this study demonstrate that the rate of release of amino acids per unit of forearm and adipose tissue at 22 h of fasting is lower in women with abdominal obesity than in lean women, which may help obese women decrease body protein losses during fasting. In addition, adipose tissue is a quantitatively important site for proteolysis in both lean and obese subjects.  相似文献   

13.
14.
Visceral adipose tissue has been shown to have high lipolytic activity. The aim of this study was to examine whether free fatty acid (FFA) uptake into visceral adipose tissue is enhanced compared to abdominal subcutaneous tissue in vivo. Abdominal adipose tissue FFA uptake was measured using positron emission tomography (PET) and [18F]‐labeled 6‐thia‐hepta‐decanoic acid ([18F]FTHA) and fat masses using magnetic resonance imaging (MRI) in 18 healthy young adult males. We found that FFA uptake was 30% higher in visceral compared to subcutaneous adipose tissue (0.0025 ± 0.0018 vs. 0.0020 ± 0.0016 µmol/g/min, P = 0.005). Visceral and subcutaneous adipose tissue FFA uptakes were strongly associated with each other (P < 0.001). When tissue FFA uptake per gram of fat was multiplied by the total tissue mass, total FFA uptake was almost 1.5 times higher in abdominal subcutaneous than in visceral adipose tissue. In conclusion, we observed enhanced FFA uptake in visceral compared to abdominal subcutaneous adipose tissue and, simultaneously, these metabolic rates were strongly associated with each other. The higher total tissue FFA uptake in subcutaneous than in visceral adipose tissue indicates that although visceral fat is active in extracting FFA, its overall contribution to systemic metabolism is limited in healthy lean males. Our results indicate that subcutaneous, rather than visceral fat storage plays a more direct role in systemic FFA availability. The recognized relationship between abdominal visceral fat mass and metabolic complications may be explained by direct effects of visceral fat on the liver.  相似文献   

15.
ARMELLINI FABIO, MAURO ZAMBONI, TAMARA HARRIS, ROCCO MICCIOLO, OTTAVIO BOSELLO. Sagittal diameter minus subcutaneous thickness. An easy-to-obtain parameter that improves visceral fat prediction. Two groups of 99 and 98 women were studied to test if correcting sagittal diameter by subtracting the thickness of subcutaneous abdominal adipose tissue improves its degree of association with visceral adipose tissue. The first group (age, 40 ± 14 years; body mass index [BMI], 36 ± 6 kg/m2) was used to calculate the predictive equations for visceral adipose tissue. The second group (age, 43 ± 14 years; BMI, 37 ± 6 kg/m2) was used for cross-validation. Various anthropometric parameters were measured by ultrasound and computed tomography. Correlation coefficients with single-slice visceral adipose tissue area, after sagittal diameter was corrected by subtracting subcutaneous thickness, rose from 0.63 to 0.72 in the first group and from 0.64 to 0.71 in the second group. The standard error of residuals of the regression formula for visceral adipose tissue area was 10% lower with modified sagittal diameter than with sagittal diameter alone. During cross-validation, the standard error of differences was 5% lower with modified sagittal diameter. The visceral adipose tissue estimate was also less biased by the size of the area when sagittal diameter minus subcutaneous thickness was used. Results show that subtracting the thickness of abdominal subcutaneous adipose tissue from sagittal diameter significantly improves the predictive power of sagittal diameter for visceral adipose tissue and could be a useful tool for epidemiological studies.  相似文献   

16.
Fuzzy algorithms: Application to adipose tissue quantification on MR images   总被引:1,自引:0,他引:1  
Metabolic syndrome, which is related to abdominal obesity, is a fast growing disease in our western countries. Its presence greatly increases the risk of developing cardiovascular diseases. The accumulation of visceral adipose tissue plays a key role in the development of the metabolic syndrome. The increase of waist circumference is one of the five criteria of the metabolic syndrome diagnosis. But this increase can be due to visceral or subcutaneous adipose tissues. And these adipose tissues do not play the same rule in metabolic syndrome. The purpose of this study was to develop software for automatic and reliable quantification of visceral and subcutaneous adipose tissues, to detect patient with high risk to develop metabolic syndrome and to follow the evolution of adipose tissue repartition after treatment. A gradient echo magnetic resonance (MR) technique is used, with a TE such that fat and water are opposed in phase. The developed process is based on two fuzzy algorithms. First, we fuzzy generalized clustering algorithms allow to merge pixels according to their intensities. Then, fuzzy connectedness algorithm allows to merge pixels according to cost function related to distance, gradient distance and intensities. A validation is performed with a comparison between expert results made by manual drawing and purpose-made software results. Our software provides an automatic and reliable method to segment visceral and subcutaneous adipose tissue and additionally avoids in some case the problem of inhomogeneity of signal intensity.  相似文献   

17.

Objective:

Improved understanding of how depot‐specific adipose tissue mass predisposes to obesity‐related comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as metabolic benefits of weight loss. We hypothesized that three‐dimensional (3D) contiguous “fat‐water” MR imaging (FWMRI) covering the majority of a whole‐body field of view (FOV) acquired at 3 Tesla (3T) and coupled with automated segmentation and quantification of amount, type, and distribution of adipose and lean soft tissue would show great promise in body composition methodology.

Design and Methods:

Precision of adipose and lean soft tissue measurements in body and trunk regions were assessed for 3T FWMRI and compared to dual‐energy X‐ray absorptiometry (DXA). Anthropometric, FWMRI, and DXA measurements were obtained in 12 women with BMI 30‐39.9 kg/m2.

Results:

Test–retest results found coefficients of variation (CV) for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and DXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST, and TTLST, respectively.

Conclusions:

While Bland–Altman plots demonstrated agreement between FWMRI and DXA for GBAT and TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be explained by the FWMRI FOV length and potential for DXA to overestimate lean soft tissue. While more development is necessary, the described 3T FWMRI method combined with fully‐automated segmentation is fast (<30‐min total scan and post‐processing time), noninvasive, repeatable, and cost‐effective.  相似文献   

18.
We have investigated the gene and protein expression of adipose triglyceride lipase (ATGL) and triglyceride (TG) lipase activity from subcutaneous and visceral adipose tissue of lean and obese subjects. Visceral and subcutaneous adipose tissue was obtained from 16 age-matched lean and obese subjects during abdominal surgery. Tissues were analyzed for mRNA expression of lipolytic enzymes by real-time quantitative PCR. ATGL protein content was assessed by Western blot and TG lipase activity by radiometric assessment. Subcutaneous and visceral adipose tissue of obese subjects had elevated mRNA expression of PNPLA2 (ATGL) and other lipases including PNPLA3, PNPLA4, CES1, and LYPLAL1 (P < 0.05). Surprisingly, ATGL protein expression and TG lipase activity were reduced in subcutaneous adipose tissue of obese subjects. Immunoprecipitation of ATGL reduced total TG lipase activity in adipose lysates by 70% in obese and 83% in lean subjects. No significant differences in the ATGL activator CGI-58 mRNA levels (ABHD5) were associated with obesity. These data demonstrate that ATGL is important for efficient TG lipase activity in humans. They also demonstrate reduced ATGL protein expression and TG lipase activity despite increased mRNA expression of ATGL and other novel lipolytic enzymes in obesity. The lack of correlation between ATGL protein content and in vitro TG lipase activity indicates that small decrements in ATGL protein expression are not responsible for the reduction in TG lipase activity observed here in obesity, and that posttranslational modifications may be important.  相似文献   

19.
Adiponectin is an adipocyte-derived hormone associated with insulin sensitivity and atherosclerotic risk. As central rather than gluteofemoral fat is known to increase the risk of type 2 diabetes and cardiovascular disease, we investigated the mRNA and protein expression of adiponectin in human adipose tissue depots. RNA was extracted from 46 human adipose tissue samples from non-diabetic subjects aged 44.33 +/- 12.4 with a BMI of 28.3 +/- 6.0 (mean +/- SD). The samples were as follows: 21 abdominal subcutaneous, 13 omentum, 6 thigh; samples were also taken from diabetic subjects aged 66.6 +/- 7.5 with BMI 28.9 +/- 3.17; samples were: 6 abdominal subcutaneous; 3 thigh. Quantitative PCR and Western analysis was used to determine adiponectin content. Protein content studies determined that when compared with non-diabetic abdominal subcutaneous adipose tissue (Abd Sc AT) (values expressed as percentage relative to Abd Sc AT -100 %). Adiponectin protein content was significantly lower in non-diabetic omental AT (25 +/- 1.6 %; p < 0.0001, n = 6) and in Abd Sc AT from diabetic subjects (36 +/- 1.5 %; p < 0.0001, n = 4). In contrast, gluteal fat maintained high adiponectin protein content from non-diabetic patients compared with diabetic patients. An increase in BMI was associated with lower adiponectin protein content in obese ND Abd Sc AT (25 +/- 0.4 %; p < 0.0001). These findings were in agreement with the mRNA expression data. In summary, this study indicates that adiponectin protein content in non-diabetic subjects remains high in abdominal subcutaneous fat, including gluteal fat, explaining the high serum adiponectin levels in these subjects. Omental fat, however, expresses little adiponectin. Furthermore, abdominal and gluteal subcutaneous fat appears to express significantly less adiponectin once diabetic status is reached. In conclusion, the adipose tissue depot-specific expression of adiponectin may influence the pattern of serum adiponectin concentrations and subsequent disease risk.  相似文献   

20.

Background

Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR).

Methods and Principal Findings

VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT.

Conclusions

Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号