首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic control of cell wall invertases in developing endosperm of maize   总被引:1,自引:0,他引:1  
Chourey PS  Jain M  Li QB  Carlson SJ 《Planta》2006,223(2):159-167
  相似文献   

2.
A single-layered disc of peripheral pronged cells and central prongless cells impart the typical gear shape to colonies of Pediastrum, while the walls of each cell have a characteristic reticulate triangular pattern. The two-layered wall forms in the cells during colony formation following zoospore aggregation and adhesion. The uniformly thin outer layer reflects contours resulting from differential thickening in the reticulate pattern of the inner, thicker, more fibrillar and granular wall layer. The reticulate pattern thus imparted to the outer wall layer persists in empty zoosporangia following the release of zoospores. Columns of electron-dense material extend through the outer wall layer except at the ridges and centers of the reticulum. Following mitosis and cleavage, the resulting zoospores are extruded within a vesicle membrane consisting of the inner wall layer. Separation of this membrane from the parent cell occurs in material of the inner layer adjacent to the outer wall. Vesicles containing swarming zoospores also contain a granular material which appears to become associated with the aggregating and adhering cells of new colonies. Microtubules occur in zoospores prior to adherence but are absent during wall deposition.  相似文献   

3.
4.
Genes active in developing wheat endosperm   总被引:3,自引:0,他引:3  
This paper describes the construction and characterisation of a cDNA library from wheat endosperm tissue during the early stages of grain filling. Developing wheat endosperm tissue was characterised with respect to standard measures including dry weight, cytological appearance and timing of expression of major sources of mRNA such as the seed storage protein genes. In addition, the full complement of proteins present at mid-endosperm development was examined using 2D-electrophoretic techniques. Based on this characterisation, endosperm from the developing grain 8–12 days post-anthesis was chosen for isolating mRNA and preparing cDNA. At this stage in development the mRNA population is not yet dominated by the accumulation of mRNA from seed storage protein genes. A cDNA library, not normalised, containing a high percentage of full length cDNA clones was constructed and 4,319 clones sequenced ("single-pass"). Partitioning of the cDNA sequences into gene families and singletons provided the basis for quantifying the accumulation of sequence classes relative to the total number of sequences determined. The accumulation of gene families/singletons was not linear. However, mathematical modeling of the data suggested that the maximum number of different genes expressed is within the range of 4,500–8,000 (detailed in the Appendix). If an average is taken of these extremes, approximately 27% of the gene products were visible as proteins in the 2D-electrophoretic analysis. Analysis of a functional class of genes relevant to wheat grain end-use, namely the glutenin/gliadin seed storage protein class of genes, revealed a new category of gene characterised by a distinctive N-terminal domain and a reduced central repetitive domain. Electronic Publication  相似文献   

5.
Starch synthesis and carbon partitioning in developing endosperm   总被引:14,自引:0,他引:14  
The biosynthesis of starch is the major determinant of yield in cereal grains. In this short review, attention is focused on the synthesis of the soluble substrate for starch synthesis, ADPglucose (ADPG). Consideration is given to the pathway of ADPG production, its subcellular compartmentation, and the role of metabolite transporters in mediating its delivery to the site of starch synthesis. As ADPG is an activated sugar, the dependence of its production on respiration, changes which occur during development, and the constraints which ATP production may place on carbon partitioning into different end-products are discussed.  相似文献   

6.
Lysine-ketoglutarate reductase activity was detected and characterized in the developing endosperm of maize (Zea mays L.). The enzyme showed specificity for its substrates: lysine, α-ketoglutarate, and NADPH. Formation of the reaction product saccharopine was demonstrated. The pH optimum of the enzyme was close to 7, and the Km for lysine and α-ketoglutarate were 5.2 and 1.8 millimolar, respectively.  相似文献   

7.
Ketose reductase activity in developing maize endosperm   总被引:5,自引:5,他引:0  
Ketose reductase (NAD-dependent polyol dehydrogenase EC 1.1.1.14) activity, which catalyzes the NADH-dependent reduction of fructose to sorbitol (d-glucitol), was detected in developing maize (Zea mays L.) endosperm, purified 104-fold from this tissue, and partially characterized. Product analysis by high performance liquid chromatography confirmed that the enzyme-catalyzed reaction was freely reversible. In maize endosperm, 15 days after pollination, ketose reductase activity was of the same order of magnitude as sucrose synthase activity, which produces fructose during sucrose degradation. Other enzymes of hexose metabolism detected in maize endosperm were present in activities of only 1 to 3% of the sucrose synthase activity. CaCl2, MgCl2, and MnCl2 stimulated ketose reductase activity 7-, 6-, and 2-fold, respectively, but had little effect on NAD-dependent polyol dehydrogenation (the reverse reaction). The pH optimums for ketose reductase and polyol dehydrogenase reactions were 6.0 and 9.0, respectively. Km values were 136 millimolar fructose and 8.4 millimolar sorbitol. The molecular mass of ketose reductase was estimated to be 78 kilodaltons by gel filtration. It is postulated that ketose reductase may function to metabolize some of the fructose produced during sucrose degradation in maize endosperm, but the metabolic fate of sorbitol produced by this reaction is not known.  相似文献   

8.
9.
Summary The establishment of actinorhizal root nodules involves penetration of host cell walls and intracellular colonization by the nitrogen-fixing endosymbiont,Frankia (Actinomycetales). In the early stages of the infection process inAlnus, unusual cell walls with undulate profiles were observed in root tip meristematic derivatives, and in early (preinfection) derivatives of the nodule lobe meristem, inFrankia-inoculated plants. The irregular cell walls attached obliquely to preexisting walls, but were not discontinuous. Serial sections revealed that the unusual walls divided two daughter cells. Microtubules in bundled arrays were abundant near the undulate walls, and radiated in several planes. In the root tips, the anomalous cell walls were observed within one day of inoculation withFrankia.  相似文献   

10.
β-aspartokinase (EC 2.7.2.4.) has been isolated from the developing endosperm (30 days post-pollination) of Zea mays (cv. Pioneer 3145). Enzyme activity was dependent upon ATP, Mg++ or Mn++, aspartate, and protein concentration. Double reciprocal plots of velocity vs. aspartate concentrations deviated from a straight line at low aspartate concentration indicating two apparent Km's of 0.5 and 6.6 mM. Enzyme activity was inhibited by lysine but not by methionine or threonine. The endosperm-derived β-aspartokinase behaved similarly to enzyme isolated from 6-day-old etiolated shoot tissue. The presence of β-aspartokinase in developing endosperm provides new insight into the source of the aspartate-derived amino acids in maize endosperm.  相似文献   

11.
Isolation of amyloplasts from developing maize endosperm   总被引:3,自引:3,他引:0  
Methods for the formation of protoplasts from developing maize endosperm and for the aqueous isolation of intact amyloplasts from such protoplasts are described. Protoplasts were obtained after incubating endosperm slices in a medium containing cellulase and pectolyase for 5 days at 4°C or 5 hours at 30°C. After purification in a Ficoll density gradient, the protoplasts were reptured by forcing the suspension through a Nitex mesh (20 micrometer) positioned at the lower end of a modified disposable syringe. The resulting filtrate was layered on a discontinuous Ficoll density gradient of 30, 15, and 10%. Each Ficoll solution contained 0.7 molar sucrose, 10 millimolar arginine, 10 millimolar dl-dithiothreitol, 50 millimolar 2-(N-morpholino)ethanesulfonic acid (pH 5.6), and 2 millimolar CaCl2. After 3 hours in the cold, an amyloplast fraction 50 to 93% intact and free from cytoplasmic, mitochondrial, and glyoxysomal contamination was recovered in the 15% Ficoll layer. Amyloplast intactness was estimated by fluorescent microscopy and activity of certain amyloplast marker enzymes before and after rupture of the amyloplast membrane. Starch branching enzyme, ADPG-pyrophosphorylase, and nitrite reductase were used as amyloplast marker enzymes.  相似文献   

12.
Multiparametric flow cytometry was used to analyze the development of the endosperm in Zea mays L. during the period from 8 to 20 days after pollination (dap). Nuclear size, DNA content per nucleus, and frequencies of nuclei with varying properties were measured in preparations that included all of the endosperm nuclei of single kernels of the inbred strain Al88. Characteristics of nuclear populations from different kernels on the same ear showed minimal variation. The dynamic changes of non-mitotic cells involved in endosperm development consisted of alternating periods of DNA replication with non-replication. Seven rounds of DNA replication had occurred in some nuclei in the later developmental stages with the rate averaging approximately one round per 24-hour period. Analysis of the DNA levels in the nuclei showed an exact doubling pattern indicating an endoreduplication process, that is, replication of the entire genome during each round. The loosely organized polytenization of the chromatin occurred to varying extents among the nuclei within an endosperm. A weak positive correlation existed between DNA content and size of nuclei suggesting that DNA increases and nuclear growth may not be highly coordinated in this tissue. Increased proportions of the larger nuclei occurred in the later stages of endosperm development. Considering the entire endosperm, the average DNA content per nucleus at the 15-dap peak level was approximately 12.8 C constituting a 2.7-fold overall increase from 8 dap.  相似文献   

13.
The occurrence of polyteny in the endosperm of field-grown plants as well as cultured endosperms of variety Vg272 of pearl millet (Pennisetum glaucum (L.) R.Br.) is recorded. There is a pronounced banded structure of these chromosomes similar to the ones observed in Dipteran salivary glands. Polyteny under physiologically controlled conditions also seems feasible in pearl millet.  相似文献   

14.
  • The process of alternative splicing is critical for the regulation of growth and development of plants. Thus far, little is known about the role of alternative splicing in the regulation of maize (Zea mays L.) endosperm development.
  • RNA sequencing (RNA‐seq) data of endosperms from two maize inbred lines, Mo17 and Ji419, at 15 and 25 days after pollination (DAP), respectively, were used to identify genes that were alternatively spliced during endosperm development. Intron retention (IR) in GRMZM2G005887 was further validated using PCR and re‐sequencing technologies.
  • In total, 49,000 alternatively spliced events and ca. 20,000 alternatively spliced genes were identified in the two maize inbred lines. Of these, 30 genes involved in amino acid biosynthesis and starch biosynthesis were identified, with IR occurring only in a specific sample, and were significantly co‐expressed with ten well‐known genes related to maize endosperm development. Moreover, IR in GRMZM2G005887, which encodes a cysteine synthase, was confirmed to occur only in the endosperm of Mo17 at 15 DAP, resulting in the retention of a 121‐bp fragment in its 5′ untranslated region. Two cis‐acting regulatory elements, CAAT‐box and TATA‐box were observed in the retained fragment in Mo17 at 15 DAP; this could regulate the expression of this gene and influence endosperm development.
  • The results suggest that the 30 genes with IR identified herein might be associated with maize endosperm development, and are likely to play important roles in the developing maize endosperm.
  相似文献   

15.
Proplastids from developing castor bean endosperm have been isolated in a discontinuous sucrose density gradient. There was little contamination of the proplastids by mitochondria. Pyruvate kinase activity and phosphofructokinase activity closely correlated with triose phosphate isomerase activity, a proplastid marker, suggesting these two enzymes were contained in the proplastid. Aldolase was also found in the proplastids. The presence of these enzymes indicates that a glycolytic pathway operates in the proplastid.  相似文献   

16.
17.
18.
Properties of glutamate dehydrogenase from developing maize endosperm   总被引:2,自引:0,他引:2  
Glutamate dehydrogenase (EC 1.4.1.3) activity was assayed in homogenates of maize ( Zea mays L. inbred lines Oh43 and Oh43o2) endosperm during development. During the period 20–35 days after pollination anabolic (aminative) activities were higher than catabolic (deaminating) ones. In order to study the regulation of GDH activity, glutamine or glutamate were injected into the ear peduncle before sample harvesting. The amination and deamination reactions showed similar behaviour with different nitrogen sources: glutamine increased, whereas glutamate decreased, both aminative and deaminative reactions. Partially purified enzyme was active with NADH and NADPH in a ratio 9:1. In Tris-HCl buffer a broad optimum at pH 7.6–8.9 and pH 6.8–8.9 was observed with NADH and NADPH, respectively, NADH activity was activated by Ca2+. Saturation curves for (NH4)2SO4 and NADH showed normal Michaelis-Menten kinetics in the presence of 1 m M Ca2+, but substrate inhibition occurred without Ca2+. The enzyme was inactivated by EDTA. The effect of EDTA was reversed by Ca2+ and Mn2+, but not by Cu2+ and Mg2+.  相似文献   

19.
Some factors that may be concerned in determining final grain weight in barley ( Hordeum vulgare L. var. distichum ) have been investigated. Variation in endosperm fresh and dry weight, volume and starch content have been recorded at different stages of grain development between anthesis and harvest-ripeness for two barleys, cvs Kym and Golden Promise, differing in final grain weight. Results were recorded under both field and glasshouse conditions. The results suggest that the higher final dry weight of Kym, in comparison with Golden Promise, is a function of both rate and duration of grain filling. Only at later stages of endosperm development did the differences in volume become significant and the Kym endosperms continued to increased rapidly in volume for two to three days after endosperm volume had reached a maximum in Golden Promise. The rates of starch accumulation in both cultivars were very similar but starch deposition continued in Kym endosperms for four to five days after deposition in Golden Promise endosperms had slowed down.  相似文献   

20.
Enzymes of carbohydrate metabolism in the developing endosperm of maize   总被引:36,自引:22,他引:14       下载免费PDF全文
A number of enzymes presumably implicated in starch synthesis were assayed at various stages of endosperm development ranging from 8 days to 28 days after pollination. Activity for invertase, hexokinase, the glucose phosphate isomerases, the phosphoglucomutases, phosphorylase I, uridine diphosphate glucose pyrophosphorylase, and the starch granule-bound nucleoside diphosphate glucose-starch glucosyltransferase was present at the earliest stage of development (8 days) studied. Activity was detectable for phosphorylase III, the soluble adenosine diphosphate glucose-starch glucosyltransferase, adenosine diphosphate glucose pyrophosphorylase, and sucrose-uridine diphosphate glucosyltransferase at 12 days. For phosphorylase II and cytidine diphosphate glucose pyrophosphorylase, activity was first detectable at the 14- and 16-day stages, respectively. Rapid increases in starch content are observed prior to detectable activity for adenosine diphosphate glucose pyrophosphorylase, the soluble adenosine diphosphate glucose-starch glucosyltransferase and phosphorylases II and III. For all enzymes, except invertase, activity per endosperm rises to a peak at 22 or 28 days. Greatest activity for invertase is found at 12 days with a steady decline thereafter. The pattern of invertase activity in comparison with that of sucrose-uridine diphosphate glucosyltransferase supports previous suggestions, that the latter plays a key role in the conversion of sucrose to starch. In addition to phosphorylases I, II, and III, multiple forms of glucosephosphate isomerase and phosphoglucomutase were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号