首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
Caseins are major constituents of mammalian milks that are thought to be exclusively expressed in mammary glands and to function primarily as a protein source, as well as to ameliorate intestinal calcium uptake. In addition, proinflammatory and immunomodulatory properties have been reported for bovine caseins. Our aim was to investigate whether human casein α s1 (CSN1S1) is expressed outside the mammary gland and possesses immunomodulatory functions in humans as well. For this purpose, CSN1S1 mRNA was detected in primary human monocytes and CD4(+) and CD8(+) T cells, but not in CD19(+) B cells. CSN1S1 protein was traceable in supernatants of cultured primary human CD14(+) monocytes by ELISA. Similarly, CSN1S1 mRNA and protein were detected in the human monocytic cell lines HL60, U937, and THP1 but not in Mono Mac 6 cells. Moreover, permeabilized human monocytes and HL60 cells could be stained by immunofluorescence, indicating intracellular expression. Recombinant human CSN1S1 was bound to the surface of Mono Mac 6 cells and upregulated the expression of GM-CSF mRNA in primary human monocytes and Mono Mac 6 cells in a time- and concentration-dependent manner. A similar increase in GM-CSF protein was found in the culture supernatants. CSN1S1-dependent upregulation of GM-CSF was specifically blocked by the addition of the p38 MAPK inhibitor ML3403. Our results indicated that human CSN1S1 may possess an immunomodulatory role beyond its nutritional function in milk. It is expressed in human monocytes and stimulates the expression of the proinflammatory cytokine GM-CSF.  相似文献   

2.
3.
The recently established human monocytic cell line Mono Mac6 expressing distinct characteristics of mature monocytes/macrophages was tested for its susceptibility to infection with human immunodeficiency virus. Inoculation of the cells with the T-cell-tropic human immunodeficiency virus strains human T-lymphotropic virus type IIIB and lymphadenopathy-associated virus type 2 led to a noncytopathic productive infection becoming apparent only after a latency period of up to 56 days. The infectibility of the Mono Mac6 cells was dependent on low levels of CD4 expression, as demonstrated by blocking experiments with various CD4-specific antibodies. Increasing with time after infection (greater than 200 days), the cultured Mono Mac6 cells released virus variants which showed shortened latency periods when passaged onto uninfected Mono Mac6 cells. Also, cytopathogenicity for several CD4+ T cells of the Mono Mac6-derived virus was drastically increased; thus, the infection of the H9 cell line with low doses of virus (less than 0.1 50% tissue culture infective dose per cell) led to giant syncytium formation within 1 day and subsequent death of all fused cells. We propose Mono Mac6 cells as a new model for the study of human immunodeficiency virus infecting the monocyte/macrophage lineage, particularly with regard to virus-host cell interaction and the influence of cell differentiation and activation on latency and development of virulence. The human immunodeficiency virus-infected Mono Mac6 cell may also serve as a valuable tool for in vitro testing of antiviral therapies.  相似文献   

4.
We have previously reported that the CD14+ monocytic subpopulation of human PBMC induces programmed cell death (apoptosis) in cocultured endothelial cells (EC) when stimulated by bacterial endotoxin (LPS). Apoptosis is mediated by two routes, first via transmembrane TNF-alpha (mTNF) expressed on PBMC and, in addition, by TNF-independent soluble factors that trigger apoptosis in EC. Neutralizing anti-TNF mAb completely blocked coculture-mediated apoptosis, despite the fact that there should have been additional soluble cell death factors. This led to the hypothesis that a reverse signal is transmitted from the TNF receptor on EC to monocytes (MO) via mTNF that prevents the production of soluble apoptotic factors. Here we have tested this hypothesis. The results support the idea of a bidirectional cross-talk between MO and EC. Peripheral blood MO, MO-derived macrophages (MPhi), or the monocytic cell line Mono Mac 6 were preincubated with human microvascular EC that constitutively express TNF receptor type I (TNF-R1) and subsequently stimulated with LPS. Cell-free supernatants of these preparations no longer induced EC apoptosis. The preincubation of MO/MPhi with TNF-reactive agents, such as mAb and soluble receptors, also blocked the production of death factors, providing further evidence for reverse signaling via mTNF. Finally, we show that reverse signaling through mTNF mediated LPS resistance in MO/MPhi as indicated by the down-regulation of LPS-induced soluble TNF and IL-6 as well as IL-1 and IL-10.  相似文献   

5.
The prevalence of human immunodeficiency virus 1 (HIV) associated neurocognitive disorders resulting from infection of the central nervous system (CNS) by HIV continues to increase despite the success of combination antiretroviral therapy. Although monocytes are known to transport HIV across the blood–brain barrier (BBB) into the CNS, there are few specific markers that identify monocyte subpopulations susceptible to HIV infection and/or capable of infiltrating the CNS. We cultured human peripheral blood monocytes and characterized the expression of the phenotypic markers CD14, CD16, CD11b, Mac387, CD163, CD44v6 and CD166 during monocyte/macrophage (Mo/Mac) maturation/differentiation. We determined that a CD14+CD16+CD11b+Mac387+ Mo/Mac subpopulation preferentially transmigrates across our in vitro BBB model in response to CCL2. Genes associated with Mo/Mac subpopulations that transmigrate across the BBB and/or are infected by HIV were identified by cDNA microarray analyses. Our findings contribute to the understanding of monocyte maturation, infection and transmigration into the brain during the pathogenesis of NeuroAIDS.  相似文献   

6.
Lipopolysaccharide (LPS, endotoxin) is a potent stimulator of tumor necrosis factor alpha (TNF alpha) synthesis and secretion in mouse macrophage tumor cells (Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K., and Raetz, C. H. R. (1991) J. Biol. Chem. 266, 19490-19498). In contrast, addition of LPS (10 ng/ml) to human monomyelocytic (Mono Mac 6) cells induces very little production of TNF alpha, as judged by immunoassay of the growth medium. When 30 ng/ml 4-beta-phorbol-12-myristate 13-acetate (PMA) is added together with LPS, large amounts of TNF alpha are secreted. PMA alone is inactive. Maximal TNF alpha levels in the medium are achieved at 1 ng/ml of LPS. Protein kinase C inhibitors, such as H7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine), staurosporine, and sphingosine, reduce TNF alpha secretion stimulated by PMA. The effect of PMA has been investigated at each stage of TNF alpha biogenesis. Treatment of Mono Mac 6 cells with LPS alone results in rapid, transient, and full expression of TNF alpha mRNA. Concomitant addition of PMA does not increase TNF alpha mRNA synthesis any further, but it prolongs the half-life of TNF alpha mRNA about 3-fold. However, mRNA stabilization does not account for the striking effect of PMA on TNF alpha secretion. Analysis of TNF alpha synthesis and secretion by immunoprecipitation indicates that LPS alone is fully effective in stimulating the formation of the intracellular 26-kDa TNF alpha precursor. LPS alone is not sufficient to allow processing of the precursor and secretion of mature 17-kDa TNF alpha. The rate of TNF alpha secretion observed immediately after the addition of PMA to LPS-pretreated cells is similar to the maximum rate from LPS/PMA-treated cells, but without the lag observed in cells after being exposed to LPS and PMA simultaneously. In summary, PMA is required for the completion of TNF alpha precursor processing and secretion in LPS-treated human Mono Mac 6 cells, whereas murine RAW cells are able to complete the terminal steps of TNF alpha processing in the absence of PMA.  相似文献   

7.
Hypercoagulation with upregulated monocytic tissue factor (TF) activity often occurs under a variety of inflammatory conditions including endotoxemia. The antagonism to bacterial endotoxin (LPS) signaling often results in the depression in TF upregulation. We herein report that compound 48/80 (48/80) significantly depressed LPS-induced TF activity in human and cebus monkey peripheral blood monocytes. Employing a model monocyte-like cell line (THP-1), we explored the regulatory mechanism to identify the inhibitory site(s) of 48/80. We determine whether the inhibition results from the blockade of LPS signaling. 48/80 dose-dependently inhibited LPS-induced TF activity. Chase of LPS-challenged cells with 48/80 also significantly offset TF upregulation. In immunofluorescent approaches, FACScan analysis revealed that 48/80 had no effect on either LPS recognition or the expression of its receptors (CD14 and CD11b). Moreover, LPS-induced TF expression as well as synthesis remained unaffected in the presence of 48/80. Consistent with the independence of LPS action, 48/80 was also able to inhibit TF activity induced by A23187, ionomycin, or Quin-2 AM. Interestingly, 48/80 significantly decreased the FVII binding to either resting or LPS-challenged cells. In conclusion, our results elucidate that the inhibitory action of 48/80 was independent of LPS signaling including recognition, receptor expression, and the induced TF expression/ synthesis. However, 48/80 was able to directly block FVII binding to monocytic TF, thereby resulting in such antagonism to LPS-induced TF-initiated extrinsic coagulation.  相似文献   

8.
Leukemic cell lines such as Mono Mac 6 provide an excellent model for studying changes in gene expression during induction of cell differentiation. Mono Mac 6 cells can be induced to differentiate from their immature state to cells resembling morphologically and functionally mature monocytes and macrophages by various stimuli such as calcitriol and transforming growth factor-beta. During differentiation, the expression of differentiation markers such as the cell surface antigen CD14 or other differentiation-related genes such as 5-lipoxygenase are strongly increased. Thus, this cell line constitutes an excellent model system to study the regulation of gene expression by inducers of cell differentiation. However, myeloid cell lines are often refractory to transfection by calcium phosphate or DEAE dextran so that reporter gene assays are difficult to perform. We have established a transient transfection protocol for Mono Mac 6 cells using electroporation, a 5-lipoxygenase promoter luciferase reporter gene construct, and the secreted alkaline phosphatase as an internal standard.  相似文献   

9.
The development of classically activated monocytic cells (M1) is a prerequisite for effective elimination of parasites, including African trypanosomes. However, persistent activation of M1 that produce pathogenic molecules such as TNF and NO contributes to the development of trypanosome infection-associated tissue injury including liver cell necrosis in experimental mouse models. Aiming to identify mechanisms involved in regulation of M1 activity, we have recently documented that during Trypanosoma brucei infection, CD11b+Ly6C+CD11c+ TNF and iNOS producing DCs (Tip-DCs) represent the major pathogenic M1 liver subpopulation. By using gene expression analyses, KO mice and cytokine neutralizing antibodies, we show here that the conversion of CD11b+Ly6C+ monocytic cells to pathogenic Tip-DCs in the liver of T. brucei infected mice consists of a three-step process including (i) a CCR2-dependent but CCR5- and Mif-independent step crucial for emigration of CD11b+Ly6C+ monocytic cells from the bone marrow but dispensable for their blood to liver migration; (ii) a differentiation step of liver CD11b+Ly6C+ monocytic cells to immature inflammatory DCs (CD11c+ but CD80/CD86/MHC-IIlow) which is IFN-γ and MyD88 signaling independent; and (iii) a maturation step of inflammatory DCs to functional (CD80/CD86/MHC-IIhigh) TNF and NO producing Tip-DCs which is IFN-γ and MyD88 signaling dependent. Moreover, IL-10 could limit CCR2-mediated egression of CD11b+Ly6C+ monocytic cells from the bone marrow by limiting Ccl2 expression by liver monocytic cells, as well as their differentiation and maturation to Tip-DCs in the liver, showing that IL-10 works at multiple levels to dampen Tip-DC mediated pathogenicity during T. brucei infection. A wide spectrum of liver diseases associates with alteration of monocyte recruitment, phenotype or function, which could be modulated by IL-10. Therefore, investigating the contribution of recruited monocytes to African trypanosome induced liver injury could potentially identify new targets to treat hepatic inflammation in general, and during parasite infection in particular.  相似文献   

10.
11.
The aim of this study was to investigate the mechanism of cell activation induced by extremely low frequency magnetic fields (ELF-MF) (50 Hz) in human cells. We examined the production of free radicals in human umbilical cord blood-derived monocytes and in human Mono Mac 6 cells. The release of superoxide radical anions was analyzed using nitroblue tetrazolium chloride and the total of reactive oxygen species (ROS) was detected using dihydrorhodamine 123. Our results show a significant increase of superoxide radical anion production up-to 1.4 fold as well as an increase in ROS release up-to 1.2 fold upon exposure of monocytes to 1 mT ELF-MF (45 min). Mono Mac 6 cells exhibit higher superoxide radical anion and ROS production up-to 1.4 and 1.5 fold, respectively. These results indicate that Mono Mac 6 cells are more sensitive to ELF-MF than monocytes. Using diphenyleneiodonium chloride (DPI) a specific inhibitor for the NADPH oxidase, the MF-effect was not inhibited in Mono Mac 6 cells. Therefore, we suggest that ELF-MF exposure induces the activation of NADH oxidase in these cells. However, the MF-effect was inhibited by DPI in monocytes, indicating the activation of the NADPH oxidase after exposure to ELF-MF.  相似文献   

12.
When human monocytic Mono Mac 6 cells were treated with bacterial LPS (10 ng/ml, 72 h), they showed an increase in phagocytic activity, superoxide anion production, and expression of monocyte/macrophage-associated cell surface Ag. In these more mature (LPS-treated) cells but not in untreated cells, platelet-activating factor (PAF) (100 nM) produced a three- to fourfold increase in cytosolic free Ca2+ concentration. The cytosolic free Ca2+ concentration increase was inhibited by the PAF receptor antagonist L-659,989 (10 microM) and by EGTA (2 mM), indicating receptor-dependent Ca2+ influx. Furthermore, L-659,989 (10 microM), as well as PAF (1 microM), inhibited specific [3H]PAF binding in LPS-treated but not in untreated cells. Consistent with these results, PAF (100 nM) stimulated release of arachidonic acid and thromboxane B2 only in LPS-treated cells, and this could be inhibited by L-659,989 (10 microM) and EGTA (2 mM). Our data indicate that LPS up-regulates PAF-induced Ca2+ influx, resulting in arachidonic acid and eicosanoid release in Mono Mac 6 cells.  相似文献   

13.
The aim of this study was to investigate the mechanism of cell activation induced by extremely low frequency magnetic fields (ELF-MF) (50 Hz) in human cells. We examined the production of free radicals in human umbilical cord blood-derived monocytes and in human Mono Mac 6 cells. The release of superoxide radical anions was analyzed using nitroblue tetrazolium chloride and the total of reactive oxygen species (ROS) was detected using dihydrorhodamine 123. Our results show a significant increase of superoxide radical anion production up-to 1.4 fold as well as an increase in ROS release up-to 1.2 fold upon exposure of monocytes to 1 mT ELF-MF (45 min). Mono Mac 6 cells exhibit higher superoxide radical anion and ROS production up-to 1.4 and 1.5 fold, respectively. These results indicate that Mono Mac 6 cells are more sensitive to ELF-MF than monocytes. Using diphenyleneiodonium chloride (DPI) a specific inhibitor for the NADPH oxidase, the MF-effect was not inhibited in Mono Mac 6 cells. Therefore, we suggest that ELF-MF exposure induces the activation of NADH oxidase in these cells. However, the MF-effect was inhibited by DPI in monocytes, indicating the activation of the NADPH oxidase after exposure to ELF-MF.  相似文献   

14.
Stimulation of the human monocytic cell line Mono Mac 6 with the synthetic lipopeptide (S)-(2,3-bis(palmitoyloxy)-(2RS)-propyl)-N-palmitoyl-(R)-Cys-(S)-Ser(S)-Lys(4)-OH, trihydrochloride (Pam(3)Cys) at 10 microg/ml induces a rapid expression of the TNF gene in a TLR2-dependent fashion. Preculture of the cells with Pam(3)Cys at 1 microg/ml leads to a reduced response after subsequent stimulation with Pam(3)Cys at 10 microg/ml, indicating that the cells have become tolerant to Pam(3)Cys. The CD14 and TLR2 expression is not decreased on the surface of the tolerant cells, but rather up-regulated. Analysis of the NF-kappaB binding in Pam(3)Cys-tolerant cells shows a failure to mobilize NF-kappaB-p50p65 heterodimers, while NF-kappaB-p50p50 homodimers remain unchanged. Pam(3)Cys-tolerant cells showed neither IkappaBalpha-Ser(32) phosphorylation nor IkappaBalpha degradation but MyD88 protein was unaltered. However, IRAK-1 protein was absent in Pam(3)Cys-induced tolerance, while IRAK-1 mRNA was still detectable at 30% compared with untreated cells. In contrast, in LPS-tolerized cells, p50p50 homodimers were induced, IRAK-1 protein level was only partially decreased, and p50p65 mobilization remained intact. It is concluded that in Mono Mac 6 monocytic cells, inhibition of IRAK-1 expression at the mRNA and protein levels is the main TLR-2-dependent mechanism responsible for Pam(3)Cys-induced tolerance, but not for TLR-4-dependent LPS-induced tolerance.  相似文献   

15.
Cigarette smoking is ranked among the leading risk factors in the etiology of atherosclerotic vascular disease. The mechanisms, however, that link cigarette smoking to increased incidence of atherosclerosis are not understood. The adherence of circulating monocytes to the endothelium, migration into the subendothelium, and subsequent formation of foam cells are principal initial events in the development of atherosclerosis. We therefore determined whether cigarette smoke caused increased adherence of monocytes to endothelial cells and the cellular mechanism of this increased adherence. Cigrette smoke condensate (CSC), the particulate fraction of cigarette smoke derived from 2R1 standard research cigarettes, at a concentration of 25–30 μg/ml (average yield of CSC is 26.1 mg/cigarette), augmented (70–90%) basal adherence of human peripheral blood monocytes to a cultured monolayer of endothelial cells derived from bovine aorta (BAEC) and human umbilical vein (HUVEC). There was a concomitant increase in the expression of CD11b ligand on the surface of monocytes as determined by flow cytometry, utilizing FITC conjugated Mab MO-1 (CD11b). However, nicotine (1–15 μg/ml) and cadmium sulfate (10 μg/ml), constituents of CSC, individually or in combination had no effect either on CD11b expression or adherence of monocytes to endothelial cells. Treatment of HUVEC with CSC for 60 min also resulted in an increased expression of ICAM-1 and ELAM-1 as determined by mean fluorescence intensity of ICAM-1 and ELAM-1 labeled cells in flow cytometric analysis. The CSC induced expression of CD11b in monocytes was optimal at 25–30 min and was inhibited by protein kinase C inhibitors, staurosporine and H-7, and also by baicalein, a lipoxygenase inhibitor. Similarly, CSC induced ICAM-1 and ELAM-1 expression in HUVEC was inhibited by protein kinase C inhibitors. CSC stimulated the adherence of human monocytes but not the monocytic cell lines HL-60, U937, and THP-1 to endothelial cells. The CSC stimulated adherence of human monocytes was inhibited (80%) by MAb to CD11b and 50% by Mab to ICAM-1 and ELAM-1. These results suggest that cigarettee smoke particulate constituents activate protein kinase C, leading to increased surface expression of adhesive ligand CD11b on peripheral blood monocytes and counter receptor(s) ICAM-1 and ELAM-1 in endothelial cells. The expression of ligand and counter receptor leads to potentiated adherence of monocytes to endothelial cells, an initial event in the pathogenesis of cigarette smoke induced inflammatory response in the vessel wall. © 1994 Wiley-Liss, Inc.  相似文献   

16.
17.
18.
Rab7 is a small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. Here we report the cloning and characterization of a novel Rab7-like GTPase, which shares highest homology with Rab7 and thus is designated as Rab7b. Northern blot analysis shows that Rab7b mRNA is expressed in human heart, placenta, lung, skeletal muscle, and peripheral blood leukocyte. RT-PCR or Western blot analysis of Rab7b expression shows that Rab7b is selectively expressed in monocytes, monocyte-derived immature dendritic cells (DCs), and promyeloid or monocytic leukemia cell lines. In the peripheral blood, Rab7b is specifically detected in CD14(+) cells, but not in CD4(+), CD8(+), CD19(+) or CD56(+) cells. When immature DCs are matured with lipopolysaccharide (LPS), Rab7b expression is gradually downregulated, while Rab7b is upregulated when monocytes are activated by LPS treatments. In acute promyelocytic leukemia (APL) HL-60 and NB4 cell lines, Rab7b expression is upregulated after phorbol myristate acetate (PMA)-induced monocytic differentiation. By immunofluorescence confocal microscopy, we demonstrate that Rab7b is associated with lysosomal organelles. Our data suggest that Rab7b is a lysosome-localized monocytic cell-specific small GTPase, and is involved in PMA-induced APL cell differentiation and possibly in regulation of monocyte functions.  相似文献   

19.
Turpaev K  Bouton C  Drapier JC 《Biochemistry》2004,43(33):10844-10850
In living cells, NO signaling is mediated by NO-derived metabolites and is therefore dependent on the rate of formation of these so-called reactive nitrogen intermediates (RNIs). We have examined the effects of NO-oxidizing agents, the nitronyl nitroxide PTIO and its less hydrophobic analogue carboxy-PTIO (CPTIO), on the expression of NO-sensitive genes in monocytic U937 and Mono Mac 6 cells. We have observed that pretreatment of cells with PTIO boosted expression of IL-8 and heme oxygenase 1 (HOX) genes to a high level in cells treated with the NO donor DPTA-NO. In contrast, pretreatment of cells with CPTIO significantly inhibited NO-dependent expression of IL-8 and hardly stimulated HOX gene expression by DPTA-NO. The effect of PTIO was abrogated by reduced glutathione, suggesting that upregulation of the IL-8 and HOX genes is dependent on RNI-mediated S-nitrosation of specific regulator(s). The concentration of PTIO required to enhance mRNA level was different for IL-8 and HOX genes. Analysis of 4,5-diaminofluorescein (DAF) nitrosation in the presence of PTIO and DPTA-NO showed that optimal PTIO concentrations required for maximal N(2)O(3) synthesis and for highest IL-8 gene expression are similar. Furthermore, we have shown that, besides IL-8 and HOX, PTIO superactivates NO-dependent expression of TNF-alpha and p21/WAF1 genes. In contrast, the level of MIP-1alpha, c-jun, and c-fos genes was not changed by the presence of PTIO in U937 cells and was even reduced in Mono Mac 6 cells.  相似文献   

20.
IL-10, an anti-inflammatory cytokine, has been shown to exhibit stimulatory functions including CD14 up-regulation on human monocytic cells. CD14-mediated signaling following LPS stimulation of monocytic cells results in the synthesis of proinflammatory cytokines. Our results show that LPS-induced CD14 expression on monocytic cells may be mediated by endogenously produced IL-10. To investigate the molecular mechanism by which IL-10 enhances CD14 expression, both human monocytes and the promyelocytic HL-60 cells were used as model systems. IL-10 induced the phosphorylation of PI3K and p42/44 ERK MAPK. By using specific inhibitors for PI3K (LY294002) and ERK MAPKs (PD98059), we demonstrate that LY294002 either alone or in conjunction with PD98059 inhibited IL-10-induced phosphorylation of STAT-1 and consequently CD14 expression. However, IL-10-induced STAT-3 phosphorylation remained unaffected under these conditions. Finally, STAT-1 interfering RNA inhibited IL-10-induced CD14 expression. Taken together, these results suggest that IL-10-induced CD14 up-regulation in human monocytic cells may be mediated by STAT-1 activation through the activation of PI3K either alone or in concert with the ERK MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号