首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A 2041 bp DNA fragment isolated from the Sxr (sex reversed) region of the mouse Y Chromosome (Chr) was sequenced and characterized. The sequence, pY8/b, contains four exons that are highly similar to 525 contiguous bases from the cDNA of human ubiquitin activating enzyme El. Two of the exons contain stop codons, indicating that pY8/b is not part of a functional gene. Sequences related to pY8/b were amplified from the Y Chr of the inbred mouse strain, C57BL/6J. These sequences may be portions of the recently discovered functional equivalent of pY8/b. Despite a high degree of similarity with the human El gene, the functional equivalent of pY8/b is not the mouse El gene, because unlike El, the functional equivalent of pY8/b is expressed in a tissue-specific manner. These data are discussed with respect to theory on the evolution of the mammalian Y Chr, and in particular, to the prediction that functional genes on the Y Chr have a male-specific function.  相似文献   

3.
4.
The X-chromosomal geneglucose-6-phosphate dehydrogenase(G6pd) is known to be expressed in most cell types of mammalian species. In the mouse, we have detected a novel gene, designatedG6pd-2,encoding a G6PD isoenzyme.G6pd-2does not contain introns and appears to represent a retroposed gene. This gene is uniquely transcribed in postmeiotic spermatogenic cells in which the X-encodedG6pdgene is not transcribed. Expression of theG6pd-2sequence in a bacterial system showed that the encoded product is an active enzyme. Zymogramic analysis demonstrated that recombinant G6PD-2, but not recombinant G6PD-1 (the X-chromosome-encoded G6PD), formed tetramers under reducing conditions. Under the same conditions, G6PD tetramers were also found in extracts of spermatids and spermatozoa, indicating the presence ofG6pd-2-encoded isoenzyme in these cell types.G6pd-2is one of the very few known expressed retroposons encoding a functional protein, and the presence of this gene is probably related to X chromosome inactivation during spermatogenesis.  相似文献   

5.
6.
7.
Fatty-acid amide hydrolase (FAAH) is a membrane-bound enzyme that degrades neuromodulatory fatty acid amides, such as oleamide and anandamide, and is expressed in the mammalian central nervous system. To evaluateFAAHgenes as candidates for neurogenetic diseases in humans and mice, we have mapped the loci in both species and have determined their intron–exon structures. The humanFAAHgene was mapped to region 1p34–p35, closely linked to D1S197 and D1S443, by using PCR analysis of somatic cell hybrid (SCH) and radiation hybrid mapping panels. Analysis of an SCH mapping panel and a mouse interspecific backcross panel has localized theFaahgene to the conserved syntenic region on mouse chromosome 4, close to the neurological mutationclasper. Faahgene rearrangements were excluded by Southern blot analysis of clasper DNA. No sequence abnormality was detected in PCR products containing the 15 exons and splice junctions of the mouseFaahgene. FAAH protein levels were normal in clasper mouse tissues as determined by enzyme activity assays and Western blotting.  相似文献   

8.
9.
We report the cloning of the mouse ortholog of the humanGPR37gene, which encodes an orphan G-protein-coupled receptor highly expressed in brain tissues and homologous to neuropeptide-specific receptors ([20],Genomics 45:68–77;[45],Biochem. Biophys. Res. Commun. 233:559–567). The genomic organization of theGPR37gene is conserved in both mouse and human species with a single intron interrupting the receptor-coding sequence within the presumed third transmembrane domain. Comparative genetic mapping of theGPR37gene showed that it maps to a conserved chromosomal segment on proximal mouse chromosome 6 and human chromosome 7q31. The mouseGpr37gene contains an open reading frame coding for a 600-amino-acid protein 83% identical to the humanGPR37gene product. The predicted mouse GPR37 protein contains seven putative hydrophobic transmembrane domains, as well as a long (249 amino acid residues), arginine- and proline-rich amino-terminal extracellular domain, which is also a distinctive feature of the human GPR37 receptor. Northern blot analysis of mouse tissues withGpr37-specific probes revealed a main 3.8-kb mRNA and a much less abundant 8-kb mRNA, both expressed in the brain. A 3-kb mRNA is also expressed in the testis. Both the mouse and the humanGPR37genes may belong to a class of highly conserved mammalian genes encoding a novel type of G-protein-coupled receptor predominantly expressed in the brain.  相似文献   

10.
The large numbers of duplicated pairs of genes in zebrafish compared to their mammalian counterparts has lead to the notion that expression of zebrafish co-orthologous pairs in some cases can together describe the expression of their mammalian counterpart. Here, we explore this notion by identification and analysis of a second zebrafish ortholog of the mammalian Kit receptor tyrosine kinase (kitb). We show that in embryos, kitb is expressed in a non-overlapping pattern to that of kita, in the anterior ventral mesoderm, Rohon-beardRohon–Beard neurons, the otic vesicle, and trigeminal ganglia. The expression pattern of kita and kitb in zebrafish together approximates that of Kit in mouse, with the exception that neither zebrafish kit gene is expressed in primordial germ cells, a site of kit expression in the mouse embryo. In addition, zebrafish kita is expressed in a site of zebrafish primitive hematopoiesis but not required for blood development, and we fail to detect kitb expression in sites of zebrafish hematopoiesis. Thus, the expression and function of zebrafish kit genes cannot be described as a simple partition of the expression and function of mouse Kit. We discuss the possibility that these unaccounted for expression domains and functions are derived from more ancestral gene duplications and partitioning instead of the relatively recent teleost teleost-specific duplication. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
12.
13.
14.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

15.
The spermatogenesis associated 4 gene (SPATA4, previously named TSARG2) was first cloned from a mouse testis cDNA library and was reported to be a candidate apoptosis-related gene in male germ cells. In this study, we cloned and characterized the SPATA4 gene from chicken (Gallus gallus). Bioinformatics analysis shows that the chicken SPATA4 gene is located on chromosome 4, is made up of six exons, and contains an 860 bp open reading frame encoding a putative protein of 250 amino acids. Further analysis of the SPATA4 gene sequence indicates that it is highly conserved between avian and mammalian species. Multi-tissue RT-PCR results indicate that the chicken SPATA4 gene is specifically expressed in the testis. Moreover, according to multi-time RT-PCR results, the expression of chicken SPATA4 occurs in a development stage-dependent pattern, and is gradually upregulated during the developmental process in chicken testis. All of these results suggest that SPATA4 may play an important role in the chicken spermatogenesis process.  相似文献   

16.
17.
We have identified and characterized the complete cDNA and gene for the mouse MutS homolog 5 (Msh5), as a step toward understanding the molecular genetic mechanisms involved in the biological function of this new MutS homologous protein in mammals. The Msh5 cDNA contains a 2502-bp open reading frame (ORF) that encodes an 833-amino acid protein with a predicted molecular weight of 92.6 kDa, which shares 89.8% amino acid sequence identity with the human hMSH5 protein. Northern blot analysis demonstrated the presence of a Msh5 mRNA approximately 2.9-kb in length, most abundantly expressed in mouse testis. Yeast two-hybrid analysis indicated that the mouse Msh5 protein positively interacted with the human hMSH4 protein—suggesting that Msh5 shares common functional properties with its human counterpart. Sequence and structural analyses show that the mouse gene Msh5 spans approximately 18 kb and contains 24 exons that range in length from 36 bp for exon 7 to 392 bp for exon 1. Structural comparison with the human hMSH5 gene revealed that all of the Msh5 internal exons, but not introns, are conserved in length with the human hMSH5. The Msh5 gene is located on mouse Chromosome (Chr) 17 in a location that is syntenic to the region of human Chr 6 harboring the hMSH5 gene. The identification and characterization of Msh5 will facilitate studies of the potential functional roles of this new member of the MutS family. Received: 11 May 1999 / Accepted: 16 July 1999  相似文献   

18.
Beginning with a mouse gene mTSARG3, which was related to apoptosis of spermatogenic cells, bioinformatics was applied and a predicted novel rat gene full-length cDNA sequence was attained. Gene-specific primers were designed for PCR in rat testis cDNA library. A new gene Tsarg1 (GenBank Accession No. AY380804) was cloned, which is related to apoptosis in rat spermatogenic cells. The gene whose full cDNA length is 1176 bp containing 8 exons and 7 introns is located in rat chromosome 1q32-1q33, which encoded a protein containing 316 amino acid residues and being a new member of HSP40 protein family since the sequence contains the highly conserved J domain, which is present in all DnaJ-like proteins and is supported to have a critical role in DnaJ-DnaK protein-protein interactions. The results of RT-PCR and Northern blot analysis showed that Tsarg1 was specifically expressed in rat testis, which probably inhibits rat testis spermatogenic cell apoptosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号