首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Developmental neurobiology》2017,77(10):1175-1187
Cyclin‐dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5‐null Purkinje cells and Purkinje cells in Wnt1cre‐mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7cre‐mediated p35; p39 double KO (L7cre‐p35f/f; p39–/–) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell‐autonomous in vivo . We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5‐null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non‐cell‐autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain‐derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7cre‐p35f/f; p39–/– mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell‐autonomous and non‐cell‐autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175–1187, 2017  相似文献   

2.
3.
Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca2+ release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single‐cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain‐derived neurotrophic factor (BDNF) in the culture medium. The ryanodine‐induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 467–480, 2014  相似文献   

4.
Aryl hydrocarbon hydroxylase (AHH, cytochrome P1-450) is induced in chick liver very early during embryonic development if embryos are treated with 3-methylcholanthrene–type compounds such as 3,4,3′4′-tetrachlorobiphenyl. In mammals, AHH induction is known to be mediated by the Ah receptor. Liver from embryonic and newly hatched chicks was found to contain a cytosolic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) which has properties that are very similar to properties of the Ah receptor previously characterized in mammalian tissues. In chick embryo liver, cytosolic binding sites for TCDD were of high affinity (Kd for [3-H]-TCDD = 0.2 nM) and were specific for 3-methylcholanthrene–type inducers. The specific binding component sedimented at about 9S on sucrose density gradients prepared at low ionic strength. A high level of Ah receptor was detected in chick embryo liver by the fifth day of incubation (5 DI); this is at least 24 hours prior to the onset of AHH inducibility. The Ah receptor concentration increased from 5 DI to 8 DI, the period when chick liver is undergoing early morphological differentiation. After 8 DI, Ah receptor levels dropped substantially and remained low into the posthatching period. In contrast, AHH inducibility was high by 7 DI and remained high throughout embryonic development and into the posthatching period. The discrepancy between Ah receptor levels and the degree of AHH inducibility suggests that only a small fraction of the Ah receptor population is required for maximal AHH induction.  相似文献   

5.
In an attempt to determine whether the rescue of developing motoneurons (MNS) from programmed cell death (PCD) in the chick embryo following reductions in neuromuscular function involves muscle or neuronal nicotinic acetylcholine receptors (nAChRs), we have employed a novel cone snail toxin alphaA-OIVA that acts selectively to antagonize the embryonic/fetal form of muscle nAChRs. The results demonstrate that alphaA-OIVA is nearly as effective as curare or alpha-bungarotoxin (alpha-BTX) in reducing neuromuscular function and is equally effective in increasing MN survival and intramuscular axon branching. Together with previous reports, we also provide evidence consistent with a transition between the embryonic/fetal form to the adult form of muscle nAChRs in chicken that involves the loss of the gamma subunit in the adult receptor. We conclude that selective inhibition of the embryonic/fetal form of the chicken muscle nAChR is sufficient to rescue MNs from PCD without any involvement of neuronal nAChRs.  相似文献   

6.
To record the fast Na+ current, spheroidal heart cells enzymatically-dispersed from 3 18-day-old chick embryos were used for voltage clamping. The peak of currents in response to voltage steps of 200 ms long from holding potentials of -90 -105 mV were measured. The current-voltage curves for the peak inward current showed U-shaped relations; the averaged peak current of about -1400 pA was observed at about -30 mV and the current reversed sign at +40 + 50 mV. Both the peak current and the reversal potential values showed marked [Na]o- dependence, i.e. reduced by 36% and by 20 mV, respectively, for a halved [Na]o. Tetrodotoxin (TTX) partially (10-6 M) or completely (10-5 M) suppressed the current. The steady-state inactivation of the current (h) was characterized by the half inactivation voltage of around -80 mV and the slope factor of -4 -8 mV. The half activation voltage and the slope factor for the steady-state activation (m) were -55 mV and 4-6 mV, respectively. The electrophysiological and pharmacological properties were similar between young (3-day-old) and old (15-18-day-old) embryonic heart cells, excepting the much smaller current and the slower onset of TTX action in young embryonic hearts.  相似文献   

7.
Purkinje cell size is reduced in cerebellum of patients with autism   总被引:10,自引:0,他引:10  
1. The authors' goal was to compare the size and density of Purkinje cells in the cerebellum of subjects with and without autism. Blocks of cerebellum were dissected at autopsy from the brains of age, sex- and postmortem-intervaled (PMI) groups of autistic and normal control individuals (N = 5 per group). Frozen, unfixed blocks were sectioned and stained with 1% cresyl violet.2. The linear, molecular, granular densities and cross-sectional area of Purkinje cells were measured using computer-assisted image analysis. The average cross-sectional areas of Purkinje cells of the patients with autism were smaller by 24% when compared to the normal subjects. Two of the five autistic subjects had mean Purkinje cell sizes that corresponded to greater than 50% reduction in size. There was a substantial effect size difference in Purkinje cell size (2 = 0.29) between control and autistic brains (F(1, 8) = 3.32, P = 0.106). No differences in Purkinje cell densities were observed between the two groups.3. These data indicate the possibility of Purkinje cell atrophy in autism with significant neurohistological heterogeneity among individuals diagnosed with this disorder.  相似文献   

8.
9.
Spinal motoneurons that normally die during early development can be rescued by a variety of purified growth or neurotrophic factors and target tissue extracts. There is also indirect evidence that brain or supraspinal afferent input may influence lumbar motoneuron survival during development and that this effect may be mediated by central nervous system–derived trophic agents. This report examines the biological and biochemical properties of motoneuron survival activity obtained from extracts of the embryonic chick brain. Treatment with an ammonium sulfate (25% to 75%) fraction of embryonic day 16 (E16) or E10 brain extracts rescued many spinal motoneurons that otherwise die during the normal period of cell death in vivo (E6 to E10). The same fractions also enhanced lumbar motoneuron survival following deafferentation. There were both similarities and differences between the active fractions derived from brain extracts (BEX) when compared with extracts derived from target muscles (MEX) or with purified neurotrophic factors. Survival activity from E10 BEX was as effective in promoting motoneuron survival as E10 MEX and more effective than astrocyte-conditioned media. Unlike MEX, the active fractions from BEX also rescued placode-derived nodose ganglion cells. In addition, unlike nerve growth factor and brain-derived neurotrophic factor, active BEX fractions did not rescue neural crest-derived dorsal root ganglion cells or sympathetic ganglion neurons. Interestingly, among many cranial motor and other brainstem nuclei examined, only the survival of motoneurons from the abducens nucleus was enhanced by BEX. Active proteins obtained from BEX were further separated by gel filtration chromatography and by preparative isolelectric focusing techniques. Activity was recovered in a basic (pI8) and an acidic (pI5) small molecular weight protein fraction (20 kD or less). The specific activity of the basic fraction was increased ×66 when compared with the specific activity of crude BEX, and the basic fraction had a slightly higher specific activity than the acidic fraction. The biological and biochemical properties of these fractions are discussed in the context of known neurotrophic factors and their effects on normal and lesion-induced motoneuron death during development. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Evidence is accumulating that Eph receptor tyrosine kinases and their ligands regulate cell migration and axonal guidance during development. It was previously found that one of the Eph receptors, EphA4, is transiently expressed in subsets of chick embryonic motor neurons. Here, the expression of EphA and ephrin-A subfamily members was further examined, and the dynamic patterns of expression in chick embryonic motor neurons found. EphA3, EphA4, ephrin-A2, and ephrin-A5 were also expressed in the connective tissues of limb muscles and EphA3 and EphA4 expressing motor neurons innervated EphA3 and EphA4 expressing limb muscles, respectively. These spatiotemporal expression patterns suggest that EphA and ephrin-A proteins play important roles in muscle patterning and motor axonal guidance.  相似文献   

11.
Three techniques were used to study post-metacercarial growth and development of chemically excysted metacercariae of Echinostoma revolutum on the chorioallantoic membrane of domestic chick embryos. The in ovo technique of Zwilling (1959) and the in vitro technique of Auerbach et al. (1974) provided for better worm recovery in chick embryos than the in ovo technique of Woodruff &; Goodpasture (1931). Regardless of the technique used, postmetacercarial development was obtained for this species, and 6- to 8-day-old chorioallantoic-wornis achieved sexual development to the coiled uterus stage comparable to worms grown in domestic chicks for 7 days. However, somatic growth of worms from the chorioallantois was stunted when compared to worms grown in chicks. Worms grown on the chorioallantois voided their excretory concretions and showed histochemical lipid staining identical to that seen in worms grown in chicks.  相似文献   

12.
We have shown that in embryos treated with ethanol in ovo during days 1–3, a critical period of neuroembryogenesis, cholinergic neuronal phenotypic expression is decreased whereas GABAergic and catecholaminergic neuronal populations are increased as assessed by neuronal markers choline acetyltransferse (ChAT), glutamic acid decarboxylase (GAD) and tyrosine hydroxylase (TH) respectively. In this study, ethanol was administered intracerebrally to embryos at embryonic day 8, embryos were sacrificed at day 9 and ChAT and GAD activities assayed separately in cerebral hemispheres and remaining brain (diencephalon-midbrain and optic lobes). We found that ChAT activity was enhanced in the cerebral hemispheres only, whereas GAD activity was decreased in both cerebral hemispheres and remaining brain. We have concluded that the differential responses of neuronal phenotypes to ethanol may reflect compensatory mechanisms to ethanol insult. Moreover, these findings emphasize the vulnerability of the GABAergic neuronal phenotypes to ethanol neurotoxicity during early brain development in the chick.  相似文献   

13.
The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 microg/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.  相似文献   

14.
Excitotoxic studies using isolated chick embryo retina indicated that such an in vitro model provides a valid tool to characterize the effect of different agonists for subtypes of glutamate ionotropic receptors. In retinas maintained for 24 h in a Krebs medium, after a brief exposure (30 min) to glutamate agonists, we compared the effects produced by NMDA and non-NMDA-agonists, such as kainic acid (KA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Delayed retinal damage was assessed by measuring lactate dehydrogenase (LDH) present in the medium after exposure to the previously named agonists. Although at high concentrations, both KA and AMPA produced more relevant release than NMDA, 7-8% of total retinal LDH was released after exposure to a 50 microM concentration of non-NMDA agonists. These values were similar to those obtained after 100 microM NMDA. In this regard, retinal tissue appeared to be less sensitive to excitotoxicity based on the activation of NMDA receptor subtype. All three agents produced histopathological lesions typical for excitotoxic damage. A delayed form of excitotoxicity observed in retina segments was predominated by necrotic features. However, the activation of apoptotic machinery early during the incubation period subsequent to brief exposure to NMDA (100 microM) was also present. The activation of caspase enzymes was studied by a fluorometric protease activity assay as well as by western blot analysis. Caspase-3-like activity reached the highest value within 3 h of incubation after exposure to excitotoxin, then the level of enzyme activity declined to lower values. As confirmed by a time-related appearance of TUNEL-positive nuclei, apoptotic features appeared to be specific for retina response to NMDA. In contrast, the exposure to a 50 microM concentration of KA or AMPA induced necrotic cell damage which was evident through the incubation, leading to a delayed mechanism of excitotoxicity. These observations provide evidence that in the retinal model, with regard to agonist concentrations and subtype of glutamate receptors, the cascade of events leading to excitotoxicity may result in either apoptotic or necrotic neuronal cell damage.  相似文献   

15.
Neurulation involves a complex coordination of cellular movements that are in great part based on the modulation of the actin cytoskeleton. MARCKS, an F‐actin‐binding protein and the major substrate for PKC, is necessary for gastrulation and neurulation morphogenetic movements in mice, frogs, and fish. We previously showed that this protein accumulates at the apical region of the closing neural plate in chick embryos, and here further explore its role in this process and how it is regulated by PKC phosphorylation. PKC activation by PMA caused extensive neural tube closure defects in cultured chick embryos, together with MARCKS phosphorylation and redistribution to the cytoplasm. This was concomitant with an evident disruption of neural plate cell polarity and extensive apical cell extrusion. This effect was not due to actomyosin hypercontractility, but it was reproduced upon MARCKS knockdown. Interestingly, the overexpression of a nonphosphorylatable form of MARCKS was able to revert the cellular defects observed in the neural plate after PKC activation. Altogether, these results suggest that MARCKS function during neurulation would be to maintain neuroepithelial polarity through the stabilization of subapical F‐actin, a function that appears to be counteracted by PKC activation.  相似文献   

16.
NMDA receptors play critical roles in synaptic modulation and neurological disorders. In this study, we investigated the developmental changes in NR2 cleavage by NMDA receptor-activated calpain in cultured cortical and hippocampal neurons. Calpain activity increased with development, associated with increased expression of NMDA receptors but not of calpain I. The activation of calpain in immature and mature cortical cultures was inhibited by antagonists of NR1/2B and NR1/2A/2B receptors, whereas the inhibition of NR1/2B receptors did not alter calpain activation in mature hippocampal cultures. The degradation of NR2 subunits by calpain differed with developmental age. NR2A was not a substrate of calpain in mature hippocampal cultures, but was cleaved in immature cortical and hippocampal cultures. NR2B degradation by calpain in cortical cultures decreased with development, but the level of degradation of NR2B in hippocampal cultures did not change. The kinetics of NMDA receptor-gated whole cell currents were also modulated by calpain activation in a manner that varied with developmental stage in vitro. In early (but not later) developmental stages, calpain activation altered the NMDA-evoked current rise time and time constants for both desensitization and deactivation. Our data suggest that the susceptibility of the NMDA receptor to cleavage by calpain varies with neuronal maturity in a manner that may alter its electrophysiological properties.  相似文献   

17.
Ribosome microcrystals have been obtained for the first time in homogenates and extracts of chick embryos mainly in the form of P422 stacks that have average linear dimensions some 40% greater than those obtained in vivo.  相似文献   

18.
Recordings from cerebellar Purkinje cell dendrites have revealed that in response to sustained current injection, the cell firing pattern can move from tonic firing of Ca2+ spikes to doublet firing and even to quadruplet firing or more complex firing. These firing patterns are not modified substantially if Na+ currents are blocked. We show that the experimental results can be viewed as a slow transition of the neuronal dynamics through a period-doubling bifurcation. To further support this conclusion and to understand the underlying mechanism that leads to doublet firing, we develop and study a simple, one-compartment model of Purkinje cell dendrite. The neuron can also exhibit quadruplet and chaotic firing patterns that are similar to the firing patterns that some of the Purkinje cells exhibit experimentally. The effects of parameters such as temperature, applied current, and potassium reversal potential in the model resemble their effects in experiments. The model dynamics involve three time scales. Ca2+- dependent K+ currents, with intermediate time scales, are responsible for the appearance of doublet firing, whereas a very slow hyperpolarizing current transfers the neuron from tonic to doublet firing. We use the fast-slow analysis to separate the effects of the three time scales. Fast-slow analysis of the neuronal dynamics, with the activation variable of the very slow, hyperpolarizing current considered as a parameter, reveals that the transitions occurs via a cascade of period-doubling bifurcations of the fast and intermediate subsystem as this slow variable increases. We carry out another analysis, with the Ca2+ concentration considered as a parameter, to investigate the conditions for the generation of doublet firing in systems with one effective variable with intermediate time scale, in which the rest state of the fast subsystem is terminated by a saddle-node bifurcation. We find that the scenario of period doubling in these systems can occur only if (1) the time scale of the intermediate variable (here, the decay rate of the calcium concentration) is slow enough in comparison with the interspike interval of the tonic firing at the transition but is not too slow and (2) there is a bistability of the fast subsystem of the spike-generating variables.  相似文献   

19.
NMDA (N-methyl-D-aspartate) subtype of glutamate receptors are core components of dendritic spine postsynaptic densities (PSDs), in which they are anchored via their carboxy-terminal tails to cytoskeletal proteins. In this study, we examined the role of the neuronal intermediate filament protein, neurofilament-light (NF-L), also a component of the PSD, in the regulation of NMDA receptor (NMDAR) expression and function in a heterologous system. Coexpression of NF-L with NR1 or NR2B subunits of the NMDAR in HEK293 (human embryonic kidney 293) cells did not result in surface expression as measured by surface biotinylation and cell ELISAs, whereas the combined expression of the three elements resulted in a 20% increase in the surface abundance of NR1, along with a concomitant increase in NMDAR-mediated cytotoxicity. Investigating the origin of this increase, we found that the NR1 subunits are ubiquitinated in HEK293 cells, and that the coexpression of NF-L antagonizes this process. These results suggest a possible means of stabilization of NR1 via its association with NF-L.  相似文献   

20.
Terrestrial vertebrate embryos face a risk of low oxygen availability (hypoxia) that is especially great during their transition to air‐breathing. To better understand how fetal brains respond to hypoxia, we examined the effects of low oxygen availability on brain activity in late‐stage chick embryos (day 18 out of a 21‐day incubation period). Using cFos protein expression as a marker for neuronal activity, we focused on two specific, immunohistochemically identified cell groups known to play an important role in regulating adult brain states (sleep and waking): the noradrenergic neurons of the Locus Coeruleus (NA‐LC), and the Hypocretin/Orexin (H/O) neurons of the hypothalamus. cFos expression was also examined in the Pallium (the avian analog of the cerebral cortex). In adult mammalian brains, cFos expression changes in a coordinated way in these areas. In chick embryos, oxygen deprivation simultaneously activated NA‐LC while deactivating H/O‐producing neurons; it also increased cFos expression in the Pallium. Activity in one pallial primary sensory area was significantly related to NA‐LC activity. These data reveal that at least some of the same neural systems involved in brain‐state control in adults may play a central role in orchestrating prenatal hypoxic responses, and that these circuits may show different patterns of coordination than seen in adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1030–1037, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号