首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activin is a potent mesoderm inducing factor present in embryos of Xenopus laevis. Recent evidence has implicated activin in the inhibition of neural development in addition to the well-established induction of mesoderm in ectodermal explants. These diverse effects are critically dependent on the concentration of activin yet little is known about the mechanisms regulating the level of activin in the embryo. We report that the 3′ untranslated region (3′ UTR) of activin βB mRNA inhibits the translation of activin in embryos. Microinjection of activin mRNA from which the 3′ UTR has been deleted is 8–10-fold more potent in inducing mesoderm than mRNA containing the 3′ UTR. Truncation of the 3′ UTR also leads to a marked enhancement of activin protein levels in embryos but has no effect when the truncated mRNA is translated in vitro. The 3′ UTR also confers translational inhibition on a heterologous mRNA. These data show that a maternal factor(s) present in X. laevis regulates the translation of injected activin βB mRNA. This factor(s) could be responsible for regulating the levels of endogenous activin βB protein during mesoderm induction and the specification of ectodermal derivatives such as neural and epidermal tissues. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Neural induction is widely believed to be a direct consequence of inhibition of BMP pathways. Because of conflicting results and interpretations, we have re-examined this issue in Xenopus and chick embryos using the powerful and general TGFβ inhibitor, Smad7, which inhibits both Smad1- (BMP) and Smad2- (Nodal/Activin) mediated pathways. We confirm that Smad7 efficiently inhibits phosphorylation of Smad1 and Smad2. Surprisingly, however, over-expression of Smad7 in Xenopus ventral epidermis induces expression of the dorsal mesodermal markers Chordin and Brachyury. Neural markers are induced, but in a non-cell-autonomous manner and only when Chordin and Brachyury are also induced. Simultaneous inhibition of Smad1 and Smad2 by different approaches does not account for all Smad7 effects, indicating that Smad7 has activities other than inhibition of the TGFβ pathway. We provide evidence that these effects are independent of Wnt, FGF, Hedgehog and retinoid signalling. We also show that these effects are due to elements outside of the MH2 domain of Smad7. Together, these results indicate that BMP inhibition is not sufficient for neural induction even when Nodal/Activin is also blocked, and that Smad7 activity is considerably more complex than had previously been assumed. We suggest that experiments relying on Smad7 as an inhibitor of TGFβ-pathways should be interpreted with considerable caution.  相似文献   

3.
4.
Glucocorticoid in excess produces bone loss in vivo. Consistent with this, it reduces the stimulatory effect of transforming growth factor β (TGF-β) on collagen synthesis in osteoblast-enriched cultures in vitro, where it also suppresses TGF-β binding to its type I receptors. Analogous studies with bone morphogenetic protein-2 (BMP-2) show directly opposite results. These findings prompted us to assess the effect of glucocorticoid on BMP-2 activity in cultured bone cells, and whether either agent had a dominant influence on TGF-β binding or function. BMP-2 activity was retained in part in osteoblast-enriched cultures pre-treated or co-treated with cortisol, and was fully evident when glucocorticoid exposure followed BMP-2 treatment. In addition, BMP-2 suppressed the effects of cortisol on TGF-β activity, on TGF-β binding, and on gene promoter activity directed by a glucocorticoid sensitive transfection construct. While BMP-2 also alters the function of less-differentiated bone cells, it only minimally prevented cortisol activity in these cultures. Our studies indicate that BMP-2 can oppose certain effects by cortisol on differentiated osteoblasts, and may reveal useful ways to diminish glucocorticoid-dependent bone wasting. J. Cell. Biochem. 67:528–540, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
The history of transforming growth factor-beta (TGF-β) as a bifunctional agent in the immune system is briefly described. The importance of cellular context in understanding the role of TGF-β in regulating immune response is emphasized.  相似文献   

6.
Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411–426, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
8.
We have previously shown that mitogen-activated protein (MAP) kinase activity is required for neural specification in Xenopus. In mammalian cells, the BMP-4 effector Smad1 is inhibited by phosphorylation at MAP kinase sites (Kretzschmar et al., 1997). To test the hypothesis that MAP kinase inhibits the BMP-4/Smad1 pathway during early Xenopus development, we have generated a Smad1 mutant lacking the MAP kinase phosphorylation sites (M4A-Smad1) and compared the effects of wild-type (WT)- and M4A-Smad1 on axial pattern and neural specification in Xenopus embryos. Although overexpression of either WT- or M4A-Smad1 produced ventralized embryos, at each mRNA concentration, M4A-Smad1 had a greater ventralizing effect than WT-Smad1. Interestingly, overexpression of either form of Smad1 in ventral blastomeres disrupted posterior pattern and morphogenesis; again, more severe defects were produced by expression of M4A-Smad1 than by equal amounts of WT-Smad1. Ectodermal expression of M4A-Smad1 disrupted expression of the anterior neural gene otx2 in vivo and inhibited neural specification in response to endogenous signals in mesoderm-ectoderm recombinates. In contrast, overexpression of WT-Smad1 at identical levels had little effect on either neural specification or otx2 expression. Comparisons of protein levels following overexpression of either WT- or M4A-Smad1 indicate that WT-Smad1 may be slightly more stable than M4A-Smad1; thus, differences in stability cannot account for the increased effectiveness of M4A-Smad1. Our results demonstrate that mutations disrupting the MAPK phosphorylation sites act collectively as a gain-of-function mutation in Smad1 and that inhibitory phosphorylation of Smad1 may be a significant mechanism for the regulation of BMP-4/Smad1 signals during Xenopus development.  相似文献   

9.
Smad2 and Smad3, two essential nuclear effectors of transforming growth factor (Tgf)-β signals, have been found to be implicated in mesoderm and endoderm development in vertebrate embryos. However, their roles in the induction and patterning of the neuroectoderm are not well established. In this study, we show that interference with Smad2/3 activities in zebrafish embryos, by injecting dnsmad3b mRNA encoding a dominant negative Smad3b mutant, inhibits the expression of the early neural markers sox2 and sox3 at the onset of gastrulation and results in reduction of the anterior neuroectodermal marker otx2 as well as the posterior neuroectodermal marker hoxb1b during late gastrulation, suggesting a role of Smad2/3 activities in neural induction. Conversely, excess Smad2/3 activities, caused by injecting smad3b mRNA, lead to an enhancement of sox2 and sox3 expression in the ventral domains but an inhibition of their expression in the dorsalmost region at early stages. Overexpression of smad3b also causes ventral expansion of the otx2 and hoxb1b expression domains accompanied with rostral shift of the hoxb1b domain at late gastrulation stages. Collectively, these data indicate that Smad2/3 activities are required for neural induction and neuroectodermal posteriorization in zebrafish. Knockdown of chordin partially inhibits effect of smad3b overexpression on neural induction, implying that Smad2/3 exert their effect on neural induction in part by regulating the expression of Bmp antagonists. Furthermore, down-regulation or up-regulation of Smad2/3 activities in MZoep mutant embryos, which lack the organizer and mesendodermal tissues due to deficiency of Nodal signaling, still affects induction and patterning of the neuroectoderm, suggesting that Smad2/3 activities are implicated in neural development in the absence of the organizer and mesendodermal tissues. We additionally demonstrate that Smad2/3 activities cooperate with Wnt and Fgf signals in neural development. Thus, Smad2/3 activities play important roles not only in mesendodermal development but also in neural development during early vertebrate embryogenesis.  相似文献   

10.
The relationships between transforming growth factor-β (TGF-β) and cancer are varied and complex. The paradigm that is emerging from the experimental evidence accumulated over the past decade or so is that TGF-β can play two different and opposite roles with respect to the process of malignant progression. During early stages of carcinogenesis, TGF-β acts predominantly as a potent tumor suppressor and may mediate the actions of chemopreventive agents such as retinoids and nonsteroidal anti-estrogens. However, at some point during the development and progression of malignant neoplasms, bioactive TGF-βs make their appearance in the tumor microenvironment and the tumor cells escape from TGF-β-dependent growth arrest. In many cases, this resistance to TGF-β is the consequence of loss or mutational inactivation of the genes that encode signaling intermediates. These include the types I and II TGF-β receptors, as well as receptor-associated and common-mediator Smads. The stage of tumor development or progression at which TGF-β-resistant clones come to dominate the tumor cell population in different types of neoplasm remains to be defined. The phenotypic switch from TGF-β-sensitivity to TGF-β-resistance that occurs during carcinogenesis has several important implications for cancer prevention and treatment.  相似文献   

11.
In Xenopus, the biological effects of BMP-3 oppose those of ventralizing BMPs, but the mechanism for this antagonism remains unclear. Here, we demonstrate that BMP-3 is a dorso-anteriorizing factor in Xenopus embryos that interferes with both activin and BMP signaling. BMP-3 acts by binding to ActRIIB, the common type II receptor for these proteins. Once BMP-3 binds to ActRIIB, it cannot be competed off by excess ligand making a receptor complex that is unable to activate R-Smads and transduce signal. Consistent with a model where BMP-3 interferes with activin and BMPs through a shared receptor, we show that overexpression of BMP-3 can only be rescued by co-injection of xActRIIB. Our results identify BMP-3 as a novel antagonist of both activin and BMPs and uncover how some of the diverse developmental processes that are regulated by both activin and BMP signaling can be modulated during embryogenesis.  相似文献   

12.
Since it was first described as having the ability to inhibit macrophage activation, transforming growth factor-beta (TGF-β) has been analyzed for its role in regulating immune responses to a variety of pathogens, including viruses, bacteria, yeast, and protozoa. Most of the studies have involved organisms that infect macrophages, and this discussion will attempt to highlight these findings. Perhaps the most work has been performed with protozoan pathogens, including Trypanosoma cruzi and a variety of Leishmania species, so the discussion will begin with these organisms. Other studies have focused on mycobacteria and viruses, including human immunodeficiency virus, so these areas will also be emphasized in the discussion. For the most part, investigators have reported that TGF-β has, as expected, a negative influence on host responses and a beneficial effect on the survival and growth of intracellular pathogens. However, other studies have found that TGF-β may have a positive or beneficial effect in some models of infection. This review will attempt to highlight studies and conclusions on the roles of TGF-β in infection.  相似文献   

13.
The expression of heparan sulfate glycosaminoglycan (HS-GAG) was examined in Xenopus embryos during the developmental stages. Chemical analysis showed the existence of HS-GAG in the 35S-labeled embryos. By western blot analysis using a specific anti-HS monoclonal antibody, HS-GAG related epitope was found after the neurulation on two protein bands, whose molecular weights were approximately 90 kDa and 100 kDa, respectively. Immunohistochemistry revealed that HS-GAG occurred exclusively in the animal hemisphere in early gastrulae, and then appeared predominantly on the sheath of the neural tube, the notochord and epithelium. To address whether HS-GAG chains contribute to Xenopus embryonic development, we eliminated the embryonic HS-GAG by injecting purified Flavobacterium heparitinases (HSase) into their blastocoels. Most of the injected embryos were aberrant in mesodermal and neural formation, and became acephalic. Histological examination showed that these embryos were completely devoid of the central nervous system and the mesodermal tissues. Neither heat-inactivated heparitinase nor chondroitinase showed such abnormality. The HS-GAG-eliminated embryos showed decreased expression of both muscular and neural-specific markers. These results suggest that HS-GAG plays an indispensable role in establishing the fundamental body plan during early Xenopus development.  相似文献   

14.
The transforming growth factor-betas (TGF-βs) are synthesized as precursor proteins that are modified intracellularly prior to secretion. One of the most relevant intracellular modifications is the cleavage of the C-terminal pro-region from the N-terminal portion of the protein. The C-terminal pro-region is referred to as the latency-associated peptide (LAP) while the N-terminal region is called the mature TGF-β or active TGF-β. However, with some exceptions the LAP noncovalently associates with the mature TGF-β prior to secretion. When the mature TGF-β is associated with the LAP it is called L-TGF-β and cannot interact with its receptor and has no biological effect. The TGF-βs and their receptors are very ubiquitously expressed, suggesting that the regulation of TGF-β activity is likely to be complex and multifactorial. However, one of the most important means of controlling the biological effects of TGF-β is the regulation of converting L-TGF-β to active TGF-β. The current literature supports two major mechanisms of activation of L-TGF-β and suggests that the mechanism of activation of L-TGF-β may be varied and context-dependent. For TGF-β to become biologically active the LAP has to be either released from its associations with L-TGF-β or undergo conformational change such that the LAP is not released from the L-TGF-β complex but exposes the TGF-β receptor binding site. Since TGF-β has been associated with the pathogenesis of numerous diseases, the various mechanisms of activation of L-TGF-β in context offer the possibility of controlling TGF-β activity localized to the organ of involvement and to a more specific disease process.  相似文献   

15.
16.
Vertebrate species display consistent left-right asymmetry in the arrangement of their internal organs. This asymmetry reflects the establishment of the left-right axis and the alignment of the organs along this axis during development. Members of the TGF-β family of molecules have been implicated in both the establishment and signaling of left-right axis information. Asymmetric expression of one member, nodal (called Xnr-1 in the frog, Xenopus laevis), is highly conserved among species. The nodal-related genes are normally expressed in the left lateral plate mesoderm prior to the development of morphologic asymmetry. Expression patterns of nodal have been correlated with heart situs in mouse, chick, and frog and our previous work has implicated the dorsal midline structures in the regulation of nodal expression and cardiac laterality. In this study, three approaches were used to address the embryologic and molecular basis of asymmetric Xnr-1 expression. First, notochord and lateral plate recombinants were performed and showed that notochord can repress Xnr-1 expression in lateral plate mesoderm explants derived from either the left or the right side. Second, lateral plate mesoderm grafts indicated that Xnr-1 expression is specified but not determined at neurula stages and can subsequently be repatterned. These experiments suggest that a repressive signal from the notochord is required for maintenance of asymmetric Xnr-1 expression and that Xnr-1 expression is regulated by signals outside of the lateral plate mesoderm. Third, candidate molecules were injected to test for their ability to alter Xnr-1 expression pattern in the lateral plate. Late injection of activin protein on the right side of the embryo induced ectopic Xnr-1 expression and randomized cardiac orientation. This suggests that activin or a related TGF-β molecule is involved in the proximal regulation of asymmetric Xnr-1 expression. Dev. Genet. 23:194–202, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
18.
TGF-β is a ubiquitous protein that exhibits a broad spectrum of biological activity. The prokaryotic expression and purification of the extracellular domain of the type II TGF-β receptor (TβR-II-ED), without the need for fusion protein cleavage and refolding, is described. The recombinant TβR-II-ED fusion protein bound commercially available TGF-β1 and displayed an affinity of 11.1 nM. In a modified ELISA, receptor binding to TGF-β1 was inhibited by TGF-β3. The technique lends itself to high-throughput screening of combinatorial libraries for the identification of TGF-β agonists and antagonists and this, in turn, may have important therapeutic implications.  相似文献   

19.
Natural killer (NK) cells are a third lymphocyte population especially important in innate immunity. NK cells may also have an important role in the regulation of acquired immunity. These lymphocytes spontaneously produce large amounts of both active and latent transforming growth factor-beta (TGF-β). NK-cell-derived TGF-β1 enabled activated CD8+ T cells to inhibit antibody production by blocking the induction of this response. Production of lymphocyte-derived TGF-β is decreased in systemic lupus erythematosus. Insufficient levels of this cytokine in SLE and other autoimmune diseases may contribute to defective T regulatory cell function characteristic of this and other autoimmune diseases. NK cells are found in mucosal tissues and the TGF-β spontaneously released by these cells could contribute to the usual tolerogenic response of T cells to antigens presented at these sites. Thus, in addition to its well known immunosuppressive effects, TGF-β could have an equally important role in the generation of regulatory T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号