首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology and protein composition of intact and severed Mauthner axons (M-axons) from goldfish were examined on electron micrographs, sodium dodecyl sulfate gels, and immunoblots. Neurofilaments were the most common cytoskeletal element on electron micrographs, and neurofilament proteins (NFPs) were the most intensely silver-stained bands in M-axoplasm microdissected from control M-axons. NFPs at about 235, 145, 123, 105, 80, and 60 kD in M-axoplasm were identified with four monoclonal and three polyclonal antibodies. Similar immunoblots of samples of the M-axon myelin sheath (M-sheath) showed no reactivity to antibodies against NFPs. For up to 62 days following spinal cord severance in goldfish maintained at 15°C, the ultrastructure, protein banding pattern, and anti-NFP immunoreactivity of severed distal segments of M-axons did not change compared with control M-axons. At 62 to 81 days after severance, novel bands appeared in many silver-stained gels and anti-NFP immunoblots of distal M-axons. NFP bands completely disappeared from distal M-axon segments of some M-axons as early as 72 days after severance. However, NFP bands persisted in some distal segments for up to 81 days after severance. The degradation of NFPs occurred equally along the entire length of a distal M-axon segment, that is, there was no indication of a proximal-to-distal or distal-to-proximal sequence of NFP degradation in distal segments of severed M-axons. These biochemical data were consistent with morphological data that showed little change in the diameter or ultra-structure of severed M-axons held at 15°C for about 2 months followed by a rapid collapse of the entire distal segment at 72 to 85 days postseverance. 1994 John Wiley & Sons, Inc.  相似文献   

2.
Rapid activation of resident glia occurs after spinal cord injury. Somewhat later, innate and adaptive immune responses occur with the invasion of peripheral immune cells into the wound site. The activation of resident and peripheral immune cells has been postulated to play harmful as well as beneficial roles in the regenerative process. Mauthner cells, large identifiable neurons located in the hindbrain of most fish and amphibians, provided the opportunity to study the morphological relationship between reactive cells and Mauthner axons (M-axons) severed by spinal cord crush or by selective axotomy. After crossing in the hindbrain, the M-axons of adult goldfish, Carassius auratus, extend the length of the spinal cord. Following injury, the M-axon undergoes retrograde degeneration within its myelin sheath creating an axon-free zone (proximal dieback zone). Reactive cells invade the wound site, enter the axon-free dieback zone and are observed in the vicinity of the retracted M-axon tip as early as 3 hr postinjury. Transmission electron microscopy allowed the detection of microglia/macrophages and granulocytes, some of which appear to be neutrophil-like, at each of these locations. We believe that this is the first report of the invasion of such cells within the myelin sheath of an identifiable axon in the vertebrate central nervous system (CNS). We speculate that microglia/macrophages and granulocytes that are attracted within a few hours to the damaged M-axon are part of an inflammatory response that allows phagocytosis of debris and plays a role in the regenerative process. Our results provide the baseline from which to utilize immunohistochemical and genetic approaches to elucidate the role of non-neuronal cells in the regenerative process of a single axon in the vertebrate CNS.  相似文献   

3.
Summary The Ca2+ activated neutral protease calpain II in a concentration-dependent manner sequentially degrades the Junctional foot protein (JFP) of rabbit skeletal muscle triad junctions in either the triad membrane or as the pure protein. This progression is inhibited by calmodulin. Calpain initially cleaves the 565 kDa JFP monomer into peptides of 160 and 410 kDa, which is subsequently cleaved to 70 and 340 kDa. The 340 kDa peptide is finally cleaved to 140 and 200 kDa or its further products. When the JFP was labeled in the triad membrane with the hydrophobic probe 3-(trifuoromethyl) 3-(m) [125I]iodophenyl diazirine and then isolated and proteolysed with calpain II, the [125I] was traced from the 565 kDa parent to M r, 410 kDa and then to 340 kDa, implying that these large fragments contain the majority of the transmembrane segments. A 70-kDa frament was also labeled with the hydrophobic probe, although weakly suggesting an additional transmembrane segment in the middle of the molecule. These transmembrane segments have been predicted to be in the C-terminal region of the JFP. Using an ALOM program, we also predict that transmembrane segments may exist in the 70 kDa fragment. The JFP has eight PEDST sequences; this finding together with the calmodulin inhibition of calpain imply that the JFP is a PEDST-type calpain substrate. Calpain usually cleaves such substrates at or near calmodulin binding sites. Assuming such sites for proteolysis, we propose that the fragments of the JFP correspond to the monomer sequence in the following order from the N-terminus: 160, 70, 140 and 200 kDa. For this model, new calmodulin sequences are predicted to exist near 160 and 225 kDa from the N-terminus. When the intact JFP was labeled with azidoATP, label appeared in the 160 and 140 kDa fragments, which according to the above model contain the GXGXXG sequences postulated as ATP binding sites. This transmembrane segment was predicted by the ALOM program. In addition, calpain and calpastatin activities remained associated with triad component organelles throughout their isolation. These findings and the existence of PEDST sequences suggest that the JFP is normally degraded by calpain in vivo and that degradation is regulated by calpastatin and calmodulin  相似文献   

4.
Calcium and Salt Toleration by Bean Plants   总被引:9,自引:0,他引:9  
The role of calcium in the salt relations of the bean plant, Phaseolus vulgaris, was examined. Brittle wax bush bean plants were cultured in nutrient solutions containing 50 mM NaCl. In the absence of added calcium the plants showed a general breakdown of the roots. A low concentration of calcium in the nutrient solution (0.1 mM) prevented this. Without added calcium the plants absorbed and translocated sodium at such a rate that high concentrations of it built up in the leaves within two days. With increasing concentrations of calcium in the nutrient solution the leaves contained progressively less sodium, and at 3 mM CaSO4 the concentrations of sodium in the leaves was equal to that of the control plants grown without addition of salt. Even after both roots and stems had reached a high concentration of sodium, the leaves of plants grown in the presence of adequate concentrations of calcium contained little sodium.  相似文献   

5.
Summary During anuran metamorphosis dramatic changes in morphogenesis and differentiation of epidermis occur under the influence of thyroid hormones. Modification of ionic calcium concentration also markedly alters the pattern of proliferation and differentiation in amphibian epidermal cells in vitro. The present study was designed to determine the direct effect of low (0.05 mM) and high (0.5mM) calcium (Ca2+) in the absence or presence of thyroxine (10−7 M) on epidermal cells of the body and tail tissue in vitro. When tail fin and body skin explants were maintained in low (0.05 mM) calcium for 48 h, normal ultrastructural morphology and integrity of the cells was observed in both the tissue types. When tissues were exposed to high levels of calcium (0.5mM) in culture medium, tail epidermis showed stratification, and skein cells exhibited apoptosis, both in the presence or absence of thyroid hormones. Under high calcium conditions, the body epidermis showed keratinization of apical cells, apoptosis of skein cells, and increased desmosome formation. These results suggest that (1) optimal Ca2+ concentration for larval epidermal cells is quite low (0.05 mM), (2) high Ca2+ leads to keratinization only in body epidermis, and (3) apoptosis occurred in skein cells of both the tissues at high Ca2+ concentrations (0.5mM). The present study therefore suggests that the extracellular calcium concentration regulates the process of cell death and differentiation inRana catesbeiana larval epidermis, and this effect may be similar to the effect of calcium on mammalian epidermal cells.  相似文献   

6.
Increasing evidence shows that calpain‐mediated proteolytic processing of a selective number of proteins plays an important role in neuronal apoptosis. Study of calpain‐mediated cleavage events and related functions may contribute to a better understanding of neuronal apoptosis and neurodegenerative diseases. We, therefore, investigated the role of calpain substrates in potassium deprivation‐induced apoptosis of cerebellar granule neurons (CGNs). Twelve previously known and seven novel candidates of calpain substrates were identified by 2‐D DIGE and MALDI‐TOF/TOF MS analysis. Further, the identified novel calpain substrates were validated by Western blot analysis. Moreover, we focused on the collapsin response mediator proteins (CRMP‐1, ‐2, ‐3 and ‐4 isoforms) and found that CRMPs were proteolytically processed by calpain but not by caspase, both in vivo and in vitro. To clarify the properties of the calpain‐mediated proteolysis of CRMPs, we constructed the deletion mutants of CRMPs for additional biochemical studies. In vitro cleavage assays revealed that CRMP‐1, ‐2 and ‐4 were truncated by calpain at the C‐terminus, whereas CRMP‐3 was cleaved at the N‐terminus. Finally, we assessed the role of CRMPs in the process of potassium deprivation‐triggered neuronal apoptosis by overexpressing the truncated CRMPs in CGNs. Our data clearly showed that the truncated CRMP‐3 and ‐4, but not CRMP‐1 and ‐2, significantly induced neuronal apoptosis. These findings demonstrated that calpain‐truncated CRMP‐3 and ‐4 act as pro‐apoptotic players when CGNs undergo apoptosis.  相似文献   

7.
Evidence is presented that calpain, a calcium-activated protease, degrades the cyclin-dependent kinase inhibitor, p27, during the mitotic clonal expansion phase of 3T3-L1 preadipocyte differentiation. Calpain activity is required during an early stage of the adipocyte differentiation program. Thus, inhibition of calpain with N-acetyl-Leu-Leu-norleucinal (ALLN) blocks clonal expansion and acquisition of the adipocyte phenotype only when added between 12 and 24 h after the induction of differentiation. Likewise, inhibition of calpain by overexpression of calpastatin, the specific endogenous inhibitor of calpain, prevents 2-day post-confluent preadipocytes from reentering the cell cycle triggered by the differentiation inducers. Inhibition of calpain with ALLN causes preadipocytes to arrest just prior to S phase and prevents phosphorylation of the retinoblastoma gene product, DNA replication, clonal expansion, and subsequent adipocyte differentiation but does not affect the expression of immediate early genes (i.e. fos, jun, C/EBPbeta, and C/EBPdelta). Inhibition of calpain by either ALLN or by overexpression of calpastatin blocks the degradation of p27. p27 is degraded in vitro by cell-free extracts from clonally expanding preadipocytes that contain "active" calpain but not by extracts from pre-mitotic preadipocytes that do not. This action is inhibited by calpastatin or ALLN. Likewise, p27 in preadipocyte extracts is a substrate for purified calpain; this proteolytic action was inhibited by heat inactivation, EGTA, or ALLN. Thus, extracellular signals from the differentiation inducers appear to activate calpain, which degrades p27 allowing density-dependent inhibited preadipocytes to reenter the cell cycle and undergo mitotic clonal expansion.  相似文献   

8.
The early or “instantaneous” current-voltage relationship for the light-activated potassium current in Aplysia giant neurons was linear during the first second of illumination. However, the light current was greatly reduced or abolished by prolonged hyperpolarization. It was also greatly reduced by the injection of calcium EGTA buffers having calcium activities of 5.6 × 10?8 M and simulated by injecting buffers with calcium activities of 2.8–5.6 × 10?7 M. Removal of calcium from the extracellular fluid had no effect. Both the light-and calcium-activated outward potassium currents were reduced by tetra-ethylammonium (TEA) ions. The light current was not affected by substituting rubidium for potassium nor by substituting either lithium or Tris for sodium. The calcium-activated potassium current persisted when the neuron was cooled to 5°C. However, the light response could no longer be elicited. Light hyperpolarizes Aplysia neurons probably by increasing intracellular calcium activity two-to six-fold which activates a membrane potassium conductance. Calcium levels appear to be restored within the cell and are energy dependent. The light-activated release of calcium is inhibited by cooling. The body wall of Aplysia transmits enough visible or 500-nm light to hyperpolarize some Aplysia giant neurons under ambient conditions. These neurons may be involved in the extraretinal light entrainment that occurs in Aplysia.  相似文献   

9.
Summary Two types of cuticular strain detectors, the campaniform sensilla on the haltere of the blowfly,Calliphora vicina, and the slit sensilla on the tibia of the spider,Cupiennius salei, were investigated. In campaniform sensilla a transepithelial voltage (43.6±10.7 mV), which depends on an intact metabolism, occurs. In spider slit sensilla no transepithelial voltage exists. The occurrence and the lack of a transepithelial voltage is paralleled with differences in the ionic composition of the receptor lymph in the two arthropod sensilla. We used double-barrelled ion-selective microelectrodes to measure potassium and calcium content in the receptor lymph with respect to the hemolymph. The potassium concentration in campaniform sensilla (121±15 mM) is five times larger than that of the wing hemolymph (25±7 mM) and nine times larger than that of the haltere hemolymph (13±3 mM). These differences are statistically significant. The calcium concentration in campaniform sensilla (0.8±0.5 mM) does not differ significantly from that of the hemolymph (1.2±0.7 mM). In spider slit sensilla no significant difference occurs between the potassium concentration of the receptor lymph (9.5 mM±5.5 mM) and that of the hemolymph (8±3 mM). The calcium concentration of the hemolymph (1.6±0.9mM) is 3 times higher than that of the receptor lymph (0.6±0.3 mM). This difference is significant.Abbreviation TEV transepithelial voltage  相似文献   

10.
Nitrate Reduction in Different Grass Species   总被引:2,自引:0,他引:2  
Optimal extraction conditions, assay conditions, and levels of nit rate reductase activity (NRA) were determined for eight forage grass species adaptable to growing conditions in western North Dakota. Optimal pH for extraction of the enzyme nitrate reductase (NADH: nitrate oxidoreductase) for these species ranged from 7.0 to 9.5, whereas assay pH was 7.6 in all eight species. Substrate concentrations ranged from 1.0 to 10.0 mM for maximum NRA with higher concentrations (100 mM) significantly inhibiting NRA. The enzyme was NADH2 (0.1 to 0.2 mM for maximum activity) specific. Enhancement of maximum activity with the addition of cysteine during extraction was species dependent; six species required high cysteine concentrations between 5 mM and 10 mM and one species required only a 2.5 mM concentration. The degree of sulfhydryl protection offered by cysteine also varied. Comparisons were made between in vivo and in vitro assay methods. Ratios of in vitro to in vivo NRA ranged from 2.2. to 10.8. Use of bovine serum albumin as a protein stabilizer during extraction increased the measurable NRA in some species. Applications of nitrate reductase assay techniques to field work will be discussed.  相似文献   

11.
Summary We have developed a defined method for human epidermal keratinocyte culture. The minimally supplemented basal medium supported establishment of primary cultures from neonatal foreskin in a defined environment. It also supported serial cultivation and rapid expansion of cell number. Casein replaced serum for defined cryopreservation. Cells were serially cultivated in medium containing 0.08 mM calcium. The rate of cell division however remained high after addition of 1.8 mM calcium. The particulate transglutaminase activity of the cultures was low at confluence, even in the presence of 1.88 mM calcium, indicating an enrichment of the basal cell population. Culture with small amounts (0.3%) of chelated serum increased particulate transglutaminase activity approximately 2.2-fold in low calcium cultures and approximately 3.5-fold in high calcium cultures. A gradual reduction in growth rate of serum-treated cultures upon serial cultivation also indicated a depletion of cells with basal cell character. Bovine hypothalamic extract and cholera toxin were able to avert, in part, the differentiation-promoting effects of serum. Keratinocytes serially cultivated in the defined medium maintained the ability to develop normally into a morphologically differentiated epidermis.  相似文献   

12.
Human lymphoblasts derived from normal and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient individuals have been maintained in permanent tissue culture, and comparative studies of their purine metabolism have been undertaken. In agreement with previous observations in fibroblasts, the HGPRT-deficient lymphoblasts (less than 2% normal HGPRT activity) demonstrate threefold increases in the production of purines by the de novo pathway and four- to eightfold increases in intracellular concentrations of 5-phosphoribosyl 1-pyrophosphate (PRPP). The activities of the enzymes of purine metabolism responsible for production and utilization of PRPP were measured under optimal conditions in each cell line. The activities of adenine phosphoribosyltransferase (APRT), PRPP synthetase, and PRPP amidotransferase were independent of cell density and were not significantly different in the two cell lines. The K m values of the common substrate, PRPP, were determined in normal lymphoblast extracts for APRT (K m of 0.033 mM), HGPRT (K m of 0.074 mM), and PRPP amidotransferase (K m of 0.3 m M). The relatively low affinity of PRPP amidotransferase for PRPP suggests that deficiency of the HGPRT enzyme with its attendant increase in PRPP concentration should be accompanied by increased in vivo activity of PRPP amidotransferase, the first and presumed rate-limiting enzyme of de novo purine biosynthesis.This work was supported in part by National Institutes of Health Grants AM-05646, AM-13622, and GM-17702.  相似文献   

13.
Colorectal cancer (CRC) is an aggressive malignancy with poor prognosis. It is imperative to elucidate the potential molecular mechanisms that regulate CRC cell aggressiveness. In present study, the transient receptor potential melastatin 4 (TRPM4), a calcium-activated nonselective cation channel, is downregulated in CRC as a novel methylated tumor suppressor gene (TSG). The reduced mRNA level of TRPM4 is due to the epigenetic methylation of its promoter CpG island (CGI). Moreover, ectopic expression of TRPM4 inhibited tumor growth and metastasis both in vitro and in vivo. Our experiments also demonstrate that TRPM4 restructures the CRC cytoskeleton and activates the Ca2+-mediated calpain pathway through enhancing calcium influx. The western blot analysis shows that the expression of focal adhesion kinase (FAK), a calpain-mediated proteolytic substrate, is markedly suppressed after ectopic overexpression of TRPM4, besides, Akt (also known as protein kinase B, PKB), phosphatidylinositol 3-kinase (PI3K) as well as its central target mTOR have significantly decreased expression accompanied by elevated E-cadherin and restrained matrix metalloproteinases (MMP2/MMP9) expression. The inhibition of protease calpain effectively relieves the retard of FAK/Akt signals and reverses the migration suppression of TRPM4. Taken together, TRPM4, identified as a novel methylated TSG, employs intracellular Ca2+ signals to activate calpain-mediated cleavage of FAK and impede CRC migration and invasion through modulating the PI3K/Akt/mTOR signaling cascade, providing the first evidence that TRPM4 is likely to be a significant biomarker and potential target for CRC therapy.  相似文献   

14.
We investigated effects of pro-atherogenic oxidized lipoproteins on phosphatidylcholine (PtdCho) biosynthesis in murine lung epithelial cells (MLE-12). Cells surface-bound, internalized, and degraded oxidized low density lipoproteins (Ox-LDL). Ox-LDL significantly reduced [3H]choline incorporation into PtdCho in cells by selectively inhibiting the activity of the rate-regulatory enzyme, CTP:phosphocholine cytdylyltransferase (CCT). Ox-LDL coordinately increased the cellular turnover of CCTalpha protein as determined by [35S]methionine pulse-chase studies by inducing the calcium-activated proteinase, calpain. Forced expression of calpain or exposure of cells to the calcium ionophore, A23187, increased CCTalpha degradation, whereas overexpression of the endogenous calpain inhibitor, calpastatin, attenuated Ox-LDL-induced CCTalpha degradation. The effects of Ox-LDL on CCTalpha breakdown were attenuated in calpain-deficient cells. In vitro calpain digestion of CCTalpha isolated from cells transfected with truncated or internal deletion mutants indicated multiple cleavage sites within the CCTalpha primary structure, leading to the generation of a 26-kDa (p26) fragment. Calpain hydrolysis of purified CCTalpha generated p26, which upon NH2-terminal sequencing localized a calpain attack site within the CCTalpha amino terminus. Expression of a CCTalpha mutant where the amino-terminal cleavage site and a putative carboxyl-terminal hydrolysis region were modified resulted in an enzyme that was significantly less sensitive to proteolytic cleavage and restored the ability of cells to synthesize surfactant PtdCho after Ox-LDL treatment. Thus, these results provide a critical link between proatherogenic lipoproteins and their metabolic target, CCTalpha, resulting in impaired surfactant metabolism.  相似文献   

15.
Magnesium sulfate is widely used to prevent seizures in pregnant women with hypertension. The aim of this study was to examine the inhibitory mechanisms of magnesium sulfate in platelet aggregation in vitro. In this study, magnesium sulfate concentration-dependently (0.6–3.0 mM) inhibited platelet aggregation in human platelets stimulated by agonists. Magnesium sulfate (1.5 and 3.0 mM) also concentration-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by thrombin. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12-13-dibutyrate (PDBu, 50 nM). This phosphorylation was markedly inhibited by magnesium sulfate (3.0 mM). Magnesium sulfate (1.5 and 3.0 mM) further inhibited PDBu-stimulated platelet aggregation in human platelets. The thrombin-evoked increase in pHi was markedly inhibited in the presence of magnesium sulfate (3.0 mM). In conclusion, these results indicate that the antiplatelet activity of magnesium sulfate may be involved in the following two pathways: (1) Magnesium sulfate may inhibit the activation of protein kinase C, followed by inhibition of phosphoinositide breakdown and intracellular Ca+2 mobilization, thereby leading to inhibition of the phosphorylation of P47. (2) On the other hand, magnesium sulfate inhibits the Na+/H+ exchanger, leading to reduced intracellular Ca+2 mobilization, and ultimately to inhibition of platelet aggregation and the ATP-release reaction.  相似文献   

16.
Summary The sensitivity to calcium of the human squamous carcinoma cell line, SCC-13, was demonstrated and characterized. Cultures grown to confluence in the presence of 0.2 to 2 mM calcium had approximately 10-fold higher levels of particulate transglutaminase activity and envelope competence than those grown in low calcium (0.025 to 0.05 mM) medium. Raising the calcium from 0.025 to 1.8 mM induced expression of this enzyme and of competence over the course of a week. Conversely, for cultures grown to confluence in 1.8 mM calcium, subsequent reduction of calcium to 0.025 mM resulted in a substantial decline in transglutaminase over a similar time period. Immunoprecipitable transglutaminase was clearly identifiable in cultures grown in 1.8 mM calcium-containing medium but not in those grown in low calcium medium or in the presence of retinoic acid, suggestive of regulation at the level of mRNA accumulation or translation rather than posttranslational modification. This research was supported by Public Health Service grant AR 27130 from the National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD, and National Research Service postdoctoral fellowship ES 05336 from the National Institute of Environmental Health Sciences, Research Triangle Park, NC.  相似文献   

17.
The tetrapeptide Gly-Pro-Arg-Pro(GPRP) was introduced by diffusion into fine unligated clots formed from human fibrinogen at pH 8.5 and ionic strength 0.45 by batroxobin (αβ-fibrin) and by thrombin (α-fibrin). The α-fibrin clots were essentially liquefied at GPRP concentrations above 1 mM and αβ-fibrin clots above 15 mM, and the degree of polymerization of the resulting oligomers decreased progressively with increasing GPRP concentration as shown by γ-γ ligation with factor XIIIa and subsequent gel electrophoresis. Much smaller concentrations of GPRP, when introduced into unligated clots by diffusion, were sufficient to modify their mechanical properties profoundly. The shear modulus of elasticity G25 measured 25 s after imposition of stress fell, for example, by a factor of 0.4 at 0.1 mM GPRP in α-fibrin and at 1.1 mM in αβ-fibrin. The rate of shear creep under constant stress and the proportion of irrecoverable deformation also increased enormously. This behavior, and the corresponding decrease in steady flow viscosity, may be interpreted in terms of competition of GPRP with A sites on the E domains of fibrin monomers for bidning to “a” sites on the D domains, resulting in a moderate increase with increasing GPRP concentration of the average proportion of severed network strands and an enormous increase in the rate at which all strands dissociate and reassociate. Reassociation of severed strands in new configurations is a necessary corollary since the differential modulus or compliance remains constant during creep and creep recovery. The greater susceptibility of α-fibrin clots to interaction with GPRP is attributed to stabilization of contacts between monomer units by Bb associations in αβ-fibrin. Ligated clots, with or without GPRP, exhibited essentially no time-dependent creep and no irrecoverable deformation, corresponding to an absence of any severance of network strands.  相似文献   

18.
Sarcopenia, the age‐related loss of muscle mass, is a highly‐debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle‐specific overexpression of calpastatin, the endogenous inhibitor of calcium‐dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S‐nitrosylation. We find that calpain in adult, non‐sarcopenic muscles is S‐nitrosylated but that aging leads to loss of S‐nitrosylation, suggesting that reduced S‐nitrosylation during aging leads to increased calpain‐mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle‐specific nNOS transgene restores calpain S‐nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S‐nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age.  相似文献   

19.
Calcium-dependent proteolytic calpains are implicated in a variety of physiological processes, as well as pathologies associated with calcium overload. However, the mechanism by which calpain is activated remains elusive since intracellular calcium levels under physiological conditions do not reach the high concentration range required to trigger calpain activation. From a candidate screening using the abundance of the calpain target glutamate receptor GluRIIA at the Drosophila neuromuscular junction as a readout, we uncovered that calpain activity was inhibited upon knockdown of Ttm50, a subunit of the Tim23 complex known to be involved in the import of proteins across the mitochondrial inner membrane. Unexpectedly, Ttm50 and calpain are co-localized at calcium stores Golgi and endoplasmic reticulum (ER), and Ttm50 interacts with calpain via its C-terminal domain. This interaction is required for calpain localization at Golgi/ER, and increases calcium sensitivity of calpain by roughly an order of magnitude. Our findings reveal the regulation of calpain activation by Ttm50, and shed new light on calpain-associated pathologies.Subject terms: Proteolysis, Developmental biology  相似文献   

20.
Stimulation of the spinal cord of the electric fish Gymnotus carapo, evoked an abrupt increase in the discharge rate of the electric organ. At the maximum of this response, the rate increased an average of 26 ± 11.8%. The duration of the response was 4.9 ± 2.12 s; its latency was 10.4 ± 1.1 ms. Activation of the Mauthner axon played a decisive role in this phenomenon as indicated by the following: (1) recordings from the axon cap of the Mauthner cell demonstrated that the response was evoked if the Mauthner axon was antidromically activated and (2) a response that was similar to that produced by spinal cord stimulation, was elicited by intracellular stimulation of either Mauthner cell. Stimulation of the eighth nerve could also increase the discharge rate of the electric organ. The effect was greater if a Mauthner cell action potential was elicited. The findings described in the present report, indicate the existence of a functional connection between the Mauthner cell and the electromotor system in Gymnotus carapo. This connection may function to enhance the electrolocative sampling of the environment during Mauthner-cell mediated behaviors. This is a novel function for the Mauthner cell.Abbreviations EHP extrinsic hyperpolarizing potential - EOD electric organ discharge - M-AIR Mauthner initiated abrupt increase in rate - M-cell Mauthner cell - M-axon Mauthner axon - PM pacemaker nucleus - PM-cell pacemaker cell - PPn prepacemaker nucleus - SPPn sublemniscal prepacemaker nucleus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号