首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology and protein composition of intact and severed Mauthner axons (M-axons) from goldfish were examined on electron micrographs, sodium dodecyl sulfate gels, and immunoblots. Neurofilaments were the most common cytoskeletal element on electron micrographs, and neurofilament proteins (NFPs) were the most intensely silver-stained bands in M-axoplasm microdissected from control M-axons. NFPs at about 235, 145, 123, 105, 80, and 60 kD in M-axoplasm were identified with four monoclonal and three polyclonal antibodies. Similar immunoblots of samples of the M-axon myelin sheath (M-sheath) showed no reactivity to antibodies against NFPs. For up to 62 days following spinal cord severance in goldfish maintained at 15°C, the ultrastructure, protein banding pattern, and anti-NFP immunoreactivity of severed distal segments of M-axons did not change compared with control M-axons. At 62 to 81 days after severance, novel bands appeared in many silver-stained gels and anti-NFP immunoblots of distal M-axons. NFP bands completely disappeared from distal M-axon segments of some M-axons as early as 72 days after severance. However, NFP bands persisted in some distal segments for up to 81 days after severance. The degradation of NFPs occurred equally along the entire length of a distal M-axon segment, that is, there was no indication of a proximal-to-distal or distal-to-proximal sequence of NFP degradation in distal segments of severed M-axons. These biochemical data were consistent with morphological data that showed little change in the diameter or ultra-structure of severed M-axons held at 15°C for about 2 months followed by a rapid collapse of the entire distal segment at 72 to 85 days postseverance. 1994 John Wiley & Sons, Inc.  相似文献   

2.
The in vitro degradation of individual neurofilament proteins by calpain and the effects of calmodulin on this proteolysis were studied. Two major results are reported. First, in the presence of calcium, calmodulin binds to the 200-kD neurofilament protein, but only weakly associates with the 150-kD neurofilament protein. The 70-kD neurofilament protein shows no specific calmodulin-binding. Second, calmodulin inhibits the calpain-mediated degradation of the 200-kD neurofilament protein, but does not alter the hydrolysis of the 150-kD and 70-kD neurofilament proteins. In addition, calmodulin is able to bind to the 200-kD neurofilament protein in the presence of other neurofilament subunits, indicating that calmodulin may play a role in the regulation of the metabolism of the 200-kD neurofilament protein in vivo.  相似文献   

3.
Peripherin is a type III neuronal intermediate filament detected in motor neuron inclusions of amyotrophic lateral sclerosis (ALS) patients. We previously reported that overexpression of peripherin provokes late-onset motor neuron dysfunction in transgenic mice. Here, we show that peripherin overexpression slows down axonal transport of neurofilament (NF) proteins, and that the transport defect precedes by several months the appearance of axonal spheroids in adult mice. Defective NF transport by peripherin up-regulation was further confirmed with dorsal root ganglia (DRG) neurons cultured from peripherin transgenic embryos. Immunofluorescence microscopy and western blotting revealed that excess peripherin provokes reduction in levels of hyperphosphorylated NF-H species in DRG neurites. Similarly the transport of a green fluorescent protein (GFP)-tagged NF-M, delivered by means of a lentiviral construct, was impaired in DRG neurites overexpressing peripherin. These results demonstrate that peripherin overexpression can cause defective transport of type IV NF proteins, a phenomenon that may account for the progressive formation of ALS-like spheroids in axons.  相似文献   

4.
The dynamics of axonal transport are often colloquially described using highway traffic as a model system. Examination of the physics of traffic patterns, with emphasis on traffic jams and accidents, provides unique and perhaps counterintuitive insight into the aberrant accumulation of neurofilaments that accompanies amyotrophic lateral sclerosis/motor neuron disease.  相似文献   

5.
Specific proteolysis of the NR2 subunit at multiple sites by calpain   总被引:4,自引:0,他引:4  
The NMDA subtype of glutamate receptor plays an important role in the molecular mechanisms of learning, memory and excitotoxicity. NMDA receptors are highly permeable to calcium, which can lead to the activation of the calcium-dependent protease, calpain. In the present study, the ability of calpain to modulate NMDA receptor function through direct proteolytic digestion of the individual NMDA receptor subunits was examined. HEK293t cells were cotransfected with the NR1a/2A, NR1a/2B or NR1a/2C receptor combinations. Cellular homogenates of these receptor combinations were prepared and digested by purified calpain I in vitro. All three NR2 subunits could be proteolyzed by calpain I while no actin or NR1a cleavage was observed. Based on immunoblot analysis, calpain cleavage of NR2A, NR2B and NR2C subunits was limited to their C-terminal region. In vitro calpain digestion of fusion protein constructs containing the C-terminal region of NR2A yielded two cleavage sites at amino acids 1279 and 1330. Although it has been suggested that calpain cleavage of the NMDA receptor may act as a negative feedback mechanism, the current findings demonstrated that calpain cleavage did not alter [(125)I]MK801 binding and that receptors truncated to the identified cleavage sites had peak intracellular calcium levels, (45)Ca uptake rates and basal electrophysiological properties similar to wild type.  相似文献   

6.
Neurofilaments are central determinants of the diameter of myelinated axons. It is less clear whether neurofilaments serve other functional roles such as maintaining the structural integrity of axons over time. Here we show that an age-dependent axonal atrophy develops in the lumbar ventral roots of mice with a null mutation in the mid-sized neurofilament subunit (NF-M) but not in animals with a null mutation in the heavy neurofilament subunit (NF-H). Mice with null mutations in both genes develop atrophy in ventral and dorsal roots as well as a hind limb paralysis with aging. The atrophic process is not accompanied by significant axonal loss or anterior horn cell pathology. In the NF-M-null mutant atrophic ventral root, axons show an age-related depletion of neurofilaments and an increased ratio of microtubules/neurofilaments. By contrast, the preserved dorsal root axons of NF-M-null mutant animals do not show a similar depletion of neurofilaments. Thus, the lack of an NF-M subunit renders some axons selectively vulnerable to an age-dependent atrophic process. These studies argue that neurofilaments are necessary for the structural maintenance of some populations of axons during aging and that the NF-M subunit is especially critical.  相似文献   

7.
Myelin provides important insulating properties to axons allowing for propagation of action potentials over large distances at high velocity. Disruption of the myelin sheath could therefore contribute to cognitive impairment, such as that observed during the normal aging process. In the present study, age-related changes in myelin, myelin proteins and oligodendrocyte proteins were assessed in relationship to calpain-1 expression and cognition in the rhesus monkey. Isolation of myelin fractions from brain white matter revealed that as the content of the intact myelin fraction decreased with age, there was a corresponding increase in the floating or degraded myelin fraction, suggesting an increased breakdown of intact myelin with age. Of the myelin proteins examined, only the myelin-associated glycoprotein decreased with age. Levels of the oligodendrocyte-specific proteins 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin/oligodendrocyte-specific protein (MOSP) increased dramatically in white matter homogenates and myelin with age. Age-related increases in degraded CNPase also were demonstrable in white matter in association with increases in activated calpain-1. Degraded CNPase was also detectable in myelin fractions, with only the floating fraction containing activated calpain-1. The increases in the activated enzyme in white matter were much greater than those found in myelin fractions suggesting a source other than the myelin membrane for the marked overexpression of activated calpain-1 with age. In addition, CNPase was demonstrated to be a substrate for calpain in vitro. In summary, changes in myelin and oligodendrocyte proteins occur with age, and they appear to have a significant relationship to cognitive impairment. The overexpression of CNPase and MOSP suggests new formation of myelin by oligodendrocytes, which may occur in response to myelin degradation and injury caused by proteolytic enzymes such as calpain.  相似文献   

8.
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.  相似文献   

9.
VAMP/synaptobrevin associated proteins A and B (VAPA and VAPB), are type IV membrane proteins enriched on ER and Golgi membranes. Both VAPA and B interact with cytoplasmic lipid transport proteins and cytoskeletal elements to maintain the structure and composition of ER and Golgi membranes. Truncated forms of both proteins are present in some tissues but the functional significance of this is not clear. In rodents processing of VAPA occurs in most tissues, however, truncated forms of VAPB have only been reported in brain tissue. It is demonstrated here that the extent of VAPB processing in rat increases during postnatal development and that it is restricted to neurons. The C-terminal polypeptide generated by this cleavage reaction remains associated with cell membranes, but its subcellular distribution is distinct from the full-length protein. A mutant form of VAPB is associated with a familial form of neurodegenerative disease, amyotrophic lateral sclerosis type 8. The mutant protein, VAPB(P56S) , is resistant to truncation in primary neuronal cultures, although remains sensitive to some form of proteolysis when over-expressed in HEK293 cells. These data suggest that neuronal cells have a particular requirement for VAPB proteolysis and that reduced levels of processed polypeptides may contribute to the neurodegeneration associated with amyotrophic lateral sclerosis type 8.  相似文献   

10.
In previous studies, neuronal cell bodies, excised by hand from bovine spinal ganglia, were analyzed and heterogeneous intermediate and high molecular weight neurofilament proteins that differed in electrophoretic mobility from their axonal counterparts were demonstrated (1, 2). In the present experiment, intermediate and high molecular weight neurofilament proteins of the axonal type were treated with alkaline phosphatase, and neurofilament proteins enriched in perikaryal type proteins were labeled with32P. Results showed that neurofilament proteins were phosphorylated after their translation, in the perikarya and the proximal portion of the axon, and suggested that phosphorylation was responsible for the differences between axonal and perikaryal neurofilament proteins.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

11.
Unless the native conformation has an unstructured region, proteases cannot effectively digest a protein under native conditions. Digestion must occur from a higher energy form, when at least some part of the protein is exposed to solvent and becomes accessible by proteases. Monitoring the kinetics and denaturant dependence of proteolysis under native conditions yields insight into the mechanism of proteolysis as well as these high-energy conformations. We propose here a generalized approach to exploit proteolysis as a tool to probe high-energy states in proteins. This "native state proteolysis" experiment was carried out on Escherichia coli ribonuclease HI. Mass spectrometry and N-terminal sequencing showed that thermolysin cleaves the peptide bond between Thr92 and Ala93 in an extended loop region of the protein. By comparing the proteolysis rate of the folded protein and a peptidic substrate mimicking the sequence at the cleavage site, the energy required to reach the susceptible state (Delta G(proteolysis)) was determined. From the denaturant dependence of Delta G(proteolysis), we determined that thermolysin digests this protein through a local fluctuation, i.e. localized unfolding with minimal change in solvent assessable surface area. Proteolytic susceptibilities of proteins are discussed based on the finding of this local fluctuation mechanism for proteolysis under native conditions.  相似文献   

12.
In previous studies, we showed that overexpression of peripherin, a neuronal intermediate filament (IF) protein, in mice deficient for neurofilament light (NF-L) subunits induced a progressive adult-onset degeneration of spinal motor neurons characterized by the presence of IF inclusion bodies reminiscent of axonal spheroids found in amyotrophic lateral sclerosis (ALS). In contrast, the overexpression of human neurofilament heavy (NF-H) proteins provoked the formation of massive perikaryal IF protein accumulations with no loss of motor neurons. To further investigate the toxic properties of IF protein inclusions, we generated NF-L null mice that co-express both peripherin and NF-H transgenes. The axonal count in L5 ventral roots from 6 and 8-month-old transgenic mice showed that NF-H overexpression rescued the peripherin-mediated degeneration of motor neurons. Our analysis suggests that the protective effect of extra NF-H proteins is related to the sequestration of peripherin into the perikaryon of motor neurons, thereby abolishing the development of axonal IF inclusions that might block transport. These findings illustrate the importance of IF protein stoichiometry in formation, localization and toxicity of neuronal inclusion bodies.  相似文献   

13.
Degradation of neurofilament proteins by purified human brain cathepsin D   总被引:9,自引:6,他引:3  
Abstract: Cathepsin D (CD) was purified to homogeneity from postmortem human cerebral cortex. Incubation of CD with human neurofilament proteins (NFPs) prepared by axonal flotation led to the rapid degradation of the 200,000, 160,000, and 70,000 NFP subunits (200K, 160K, and 70K) which had been separated by one-or two-dimensional sodium dodecyl sulfate-polyacrylámide gel electrophoresis (SDS-PAGE). Degradation was appreciable at enzyme activity-to-substrate protein ratios that were two-to threefold lower than those in unfractionated homogenates from cerebral cortex. Quantitative measurements of NFPs separated by PAGE revealed that, at early stages of digestion, the 160K NFP was somewhat more rapidly degraded than the 70K subunit while the 200K NFP had an intermediate rate of degradation. At sufficiently high enzyme concentrations, all endogenous proteins in human NF preparations were susceptible to the action of CD. Human brain CD also degraded cytoskeletal proteins in NF preparations from mouse brain with a similar specificity. To identify specific NFP breakdown products, antisera against each of the major NFPs were applied to nitrocellulose electroblots of NFPs separated by two-dimensional SDS-PAGE. In addition to detecting the 200K, 160K, and 70K NFP in human NF preparations, the antisera also detected nonoverlapping groups of polypeptides resembling those in NF preparations from fresh rat brain. When human NF preparations were incubated with CD, additional polypeptides were released in specific patterns from each NFP subunit. Some of the immuno-cross-reactive fragments generated from NFPs by CD comigrated on two-dimensional gels with polypeptides present in unincubated preparations. These results demonstrate that NFPs and other cytoskel-etal proteins are substrates for CD. The physiological significance of these findings and the possible usefulness of analyzing protein degradation products for establishing the action of proteinases in vivo are discussed.  相似文献   

14.
Tullidinol, a neurotoxin extracted from the Karwinskia humboldtiana fruit, dissolved in peanut oil was injected into the right sciatic nerve of adult cats. The contralateral sciatic nerve received an equivalent volume of peanut oil alone. The fast axonal transport of labeled ([3H]Leucine) protein was studied in sensory and motor axons of both sciatic nerves. The radioactive label was pressure injected either into the L7 dorsal root ganglion or the ventral region of the same spinal cord segment. Several days after the toxin injection, the cat limped and the Achilles tendon reflex was nearly absent in the right hind limb. The amount of transported label was decreased distal to the site of toxin injection. Proximal to this site, the transported material was dammed. Sensory and motor axons showed similar changes. In addition, the toxin produced demyelination and axonal degeneration. Axonal transport and the structure of the axons were normal in the contralateral nerve. Both, Schwann cells and axons of the right sciatic nerve showed globular inclusions, presumably oil droplets containing the toxin. We conclude that Schwann cells and axons as well are tullidinol targets.Departamento de Química. Centro de Investigación y de Estudios Avanzados del IPN.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

15.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   

16.
Monoclonal antibodies have been prepared against purified neurofilament (NF) subunits (NF68, NF150, and NF200). From 25 fusions, several hundred strongly positive antibodies have been obtained. Among them are antibodies against the specific subunits as well as antibodies recognizing common antigenic determinants. These have all been characterized according to the following properties: ELISA (enzyme-linked immunosorbant assay) testing against each subunit, immunoblots against enriched neurofilament preparation, immunoblots of cyanogen bromide or chymotrypsin-treated neurofilaments, immunofluorescence with PC12 cells, and immunohistochemistry of cerebellum. Whereas the antibodies against the NF68 and NF150 appear to react with single cyanogen bromide fragments, the antibodies against the NF200 react with multiple cyanogen bromide fragments. These data are consistent with the hypothesis that the NF200 is partially composed of several repeated structural determinants. Furthermore, all of the antibodies that react with the NF200 recognize the solubilized "sidearm" domain from limited chymotryptic digestions. The locations of the common and variable domains of the three subunits are discussed in light of these results.  相似文献   

17.
Avidin is a tetramer of 16-kDa subunits that have a high affinity for biotin. Proteolysis of native apoavidin by proteinase K results in a limited attack at the loop between beta-strands 3 and 4, involving amino acids 38-43. Specifically, sites of proteolysis are at Thr 40-Ser 41 and Asn 42-Glu 43. The limited proteolysis results in an avidin product that remains otherwise intact and which has enhanced binding for 4'-hydroxyazobenzene-2-benzoic acid (HABA), a chromogenic reporter that can occupy the biotin-binding site. Saturation of the biotin-binding site with the natural ligand protects avidin from proteolysis, but saturation with HABA enhances the rate of proteolysis of the same site. Analysis of the three-dimensional structures of apoavidin and holoavidin reveals that the 3-4 loop is accessible to solvent and scores highly in an algorithm developed to identify sites of proteolytic attack. The structure of holoavidin is almost identical to the apoprotein. In particular, the 3-4 loop has the same structure in the apo and holo forms, yet there are marked differences in proteolytic susceptibility of this region. Evidence suggests that the 3-4 loop is rather mobile and flexible in the apoprotein, and that it becomes constrained upon ligand binding. In one crystal structure of the apoprotein, this loop appears constrained by contacts with symmetry-related molecules. Structural analyses suggest that the "lid" to the biotin-binding site, formed by the 3-4 loop, is displaced and made more accessible by HABA binding, thereby enhancing its proteolytic susceptibility.  相似文献   

18.
Annexins are a superfamily of calcium-dependent membrane-associated proteins which interact with phospholipids. The primary structure of Annexins I, III, VII, VIII and XI contain a region enriched in proline, glutamate, serine and threonine (PEST sequences) towards the N-terminal end while annexins II, V and VI possess PEST regions somewhat distal to the N-terminus. These PEST sequences are believed to be the signals for rapid intracellular degradation. Annexin I is known to be cleaved by calpain near its PEST region suggesting that its PEST region might be a possible calpain recognition site. Western blot analysis of annexins V and XI in rat lung homogenates suggest that these proteins are resistant to proteolysis by calpain. Annexin V was found to be stable to intrinsic lung proteases in the presence of either Ca2+ or EGTA while annexin XI was found to be partially degraded by intrinsic lung proteases in the presence of EGTA. Eight of the 10 known mammalian annexins also contain a pentapeptide sequence that is biochemically related to the KFERQ motif which is a known signal that targets protein for lysosomal proteolysis. Our data suggest that the annexins may be regulated by limited proteolysis, most likely at their N-terminal end, while most, if not all, of them might be degraded by the lysosomal pathway.  相似文献   

19.
20.
The purpose of the present investigation was to develop a system for continuous evaluation of extralysosomal proteolytic activity and its regulation in polarized epithelial cells. Filter inserts containing a tight monolayer of primary cultured pig thyrocytes were placed in a thermostated aluminium block. The cell-permeable, fluorogenic calpain and proteasome substrate succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin was added to the apical buffer and fluorescence changes were continuously measured via the fibre optics of a luminometer held at a fixed distance from the cell layer. Basal proteolytic activity was reduced by 60-70% by the proteasome inhibitor lactacystin. Proteolysis was increased within a few minutes after application of Ca(2+)-mobilizing agents (ionomycin, 4-bromo-A23187, thapsigargin and maitotoxin). Forskolin and staurosporine also enhanced the proteolytic activity. We conclude that Ca(2+)mobilization, and possibly also changes of protein kinase activity, rapidly increase non-lysosomal proteolysis in the intact thyroid epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号