首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3,4,-Methylenedioxymethamphetamine (MDMA; 'ecstasy') acts at monoamine nerve terminals to alter the release and re-uptake of dopamine and 5-HT. The present study used microdialysis in awake rats to measure MDMA-induced changes in extracellular GABA in the ventral tegmental area (VTA), simultaneous with measures of extracellular dopamine (DA) in the nucleus accumbens (NAC) shell. (+)-MDMA (0, 2.5, 5 and 10 mg/kg, i.p.) increased GABA efflux in the VTA with a bell-shaped dose-response. This increase was blocked by application of TTX through the VTA probe. MDMA (5 mg/kg) increased 5-HT efflux in VTA by 1037% (p < 0.05). The local perfusion of the 5-HT(2B/2C) antagonist SB 206553 into the VTA reduced VTA GABA efflux after MDMA from a maximum of 229% to a maximum of 126% of basal values (p < 0.05), while having no effect on basal extracellular GABA concentrations. DA concentrations measured simultaneously in the NAC shell were increased from a maximum of 486% to 1320% (p < 0.05). The selective DA releaser d-amphetamine (AMPH) (4 mg/kg) also increased VTA GABA efflux (180%), did not alter 5-HT and increased NAC DA (875%) (p < 0.05), but the perfusion of SB 206553 into the VTA failed to alter these effects. These results suggest that MDMA-mediated increases in DA within the NAC shell are dampened by increases in VTA GABA subsequent to activation of 5-HT(2B/2C) receptors in the VTA.  相似文献   

2.
Abstract: Although activation of brain catecholaminergic systems has been implicated in the cerebrovascular and metabolic changes during subarachnoid hemorrhage, cerebral ischemia, cortical ablation, and cortical freeze lesions, little is known of the response of regional brain catecholamine systems to traumatic brain injury. The present study was designed to characterize the temporal changes in concentrations of norepinephrine (NE), dopamine (DA), and epinephrine (E) in discrete brain regions following experimental fluid-percussion traumatic brain injury in rats. Anesthetized rats were subjected to fluid-percussion brain injury of moderate severity (2.2–2.3 atm) and killed at 1 h, 6 h, 24 h, 1 week, and 2 weeks postinjury (n = 6 per timepoint). Control animals (surgery and anesthesia without injury) were killed at identical timepoints (n = 6 per timepoint). Tissue concentrations of NE, DA, and E were evaluated using HPLC. Following brain injury, an acute decrease was observed in DA concentrations in the injured cortex ( p < 0.05) at 1 h postinjury, which persisted up to 2 weeks postinjury. Striatal concentrations of DA were significantly increased ( p < 0.05) only at 6 h postinjury. Hypothalamic concentrations of DA and NE increased significantly beginning at 1 h postinjury ( p < 0.05 and p < 0.05, respectively) and persisted up to 24 h for DA ( p < 0.05) and 1 week ( p < 0.05) for NE. These data suggest that acute alterations occur in regional concentrations of brain catecholamines following brain trauma, which may persist for prolonged periods postinjury.  相似文献   

3.
For these studies, young (8-9 years), middle-aged (14-17 years) and aged (23-28 years) rhesus monkeys were used as a model of normal aging in humans to investigate changes in dopamine (DA)-containing neurons in senescence. Aged monkeys exhibited significant age-related motoric declines as compared to the young animals. In vivo microdialysis studies showed that basal levels of the DA metabolites, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were diminished by 44% and 79%, respectively, in the substantia nigra (SN) of aged monkeys. In addition, d-amphetamine-evoked overflow of DA in the SN was diminished by 30% in the middle-aged animals and 67% in the aged monkeys. Post-mortem measures of DA and DA metabolites showed significant decreases in DA (20%), DOPAC (47%) and HVA (22%) levels in the putamen and a 25% decline in HVA tissue levels in the SN of the aged monkeys as compared to the young animals. Unbiased stereological cell counting of tyrosine hydroxylase (TH)-immunoreactive neurons in the SN showed a small (15-20%) but significant age-related decline in TH-positive neurons. In addition, there was a small (15-20%) but significant decline in TH-positive fiber density and TH-positive cell size. In comparison to the massive loss of DA neurons responsible for the movement dysfunctions seen in Parkinson's disease, pronounced functional changes in DA release in the SN and putamen may significantly contribute to the motoric dysfunctions characterizing normal aging in rhesus monkeys.  相似文献   

4.
Postpartum rats that had been previously raised in an artificial rearing (AR) apparatus, without their mothers or siblings during the preweaning period, show altered maternal responses towards their own offspring in adulthood. In mother-reared (MR) rats, nucleus accumbens (NAC) dopamine (DA) responses to pups evoke a robust sustained rise during the postpartum period and following treatment with estrogen/progesterone parturient-like hormones (Afonso et al., 2009). These MR females had siblings that received AR rearing with varying amounts of preweaning tactile stimulation (ARmin; ARmax). The present study examined NACshell DA responses to pup and food stimuli in these AR rats, and statistically compared them to their MR siblings. Microdialysis samples were collected from adult (90 days postnatal) AR females in different parity states (cycling vs. postpartum, Exp. 1), or after ovariectomy with different hormone treatments (sham vs. hormone, Exp. 2. After basal sample collection, pup and then food stimuli were individually presented to the females in the dialysis chamber. As with their MR siblings, basal DA concentrations were lower and pup-evoked DA responses greater in hormonally-primed AR females than in non-primed AR controls. Compared to their postpartum MR sisters (Exp. 1), AR rats had increased basal DA levels, reduced pup related DA elevations, and disrupted maternal behavior. The postpartum AR impairment in pup-evoked DA was reversed by additional pre-weaning tactile stimulation. Exogenous hormones (Exp. 2) eliminated AR impairments on pup-evoked DA responses. Although MR and AR siblings had comparable DA responses to food stimuli, upon reanalyzing MR data it was found that only postpartum dams had DA responses to pups greater than to food. These data suggest that that the hormonally induced suppression of basal DA levels may reflect saliency of pups which was greater in MR than in AR dams. Preweaning tactile stimulation could partially reverse these effects only in naturally cycling or parturient animals.  相似文献   

5.
《Hormones and behavior》2012,61(5):632-643
Postpartum rats that had been previously raised in an artificial rearing (AR) apparatus, without their mothers or siblings during the preweaning period, show altered maternal responses towards their own offspring in adulthood. In mother-reared (MR) rats, nucleus accumbens (NAC) dopamine (DA) responses to pups evoke a robust sustained rise during the postpartum period and following treatment with estrogen/progesterone parturient-like hormones (Afonso et al., 2009). These MR females had siblings that received AR rearing with varying amounts of preweaning tactile stimulation (ARmin; ARmax). The present study examined NACshell DA responses to pup and food stimuli in these AR rats, and statistically compared them to their MR siblings. Microdialysis samples were collected from adult (90 days postnatal) AR females in different parity states (cycling vs. postpartum, Exp. 1), or after ovariectomy with different hormone treatments (sham vs. hormone, Exp. 2. After basal sample collection, pup and then food stimuli were individually presented to the females in the dialysis chamber. As with their MR siblings, basal DA concentrations were lower and pup-evoked DA responses greater in hormonally-primed AR females than in non-primed AR controls. Compared to their postpartum MR sisters (Exp. 1), AR rats had increased basal DA levels, reduced pup related DA elevations, and disrupted maternal behavior. The postpartum AR impairment in pup-evoked DA was reversed by additional pre-weaning tactile stimulation. Exogenous hormones (Exp. 2) eliminated AR impairments on pup-evoked DA responses. Although MR and AR siblings had comparable DA responses to food stimuli, upon reanalyzing MR data it was found that only postpartum dams had DA responses to pups greater than to food. These data suggest that that the hormonally induced suppression of basal DA levels may reflect saliency of pups which was greater in MR than in AR dams. Preweaning tactile stimulation could partially reverse these effects only in naturally cycling or parturient animals.  相似文献   

6.
Traumatic brain injury features deficits are often ameliorated by dopamine (DA) agonists. We have previously shown deficits in striatal DA neurotransmission using fast scan cyclic voltammetry after controlled cortical impact (CCI) injury that are reversed after daily treatment with the DA uptake inhibitor methylphenidate (MPH). The goal of this study was to determine how a single dose of MPH (5 mg/kg) induces changes in basal DA and metabolite levels and with electrically evoked overflow (EO) DA in the striatum of CCI rats. MPH-induced changes in EO DA after a 2-week daily pre-treatment regime with MPH was also assessed. There were no baseline differences in basal DA or metabolite levels. MPH injection significantly increased basal [DA] output in dialysates for control but not injured rats. Also, MPH injection increased striatal peak EO [DA] to a lesser degree in CCI (176% of baseline) versus control rats (233% of baseline). However, daily pre-treatment with MPH resulted in CCI rats having a comparable increase in EO [DA] after MPH injection when compared with controls. The findings further support the concept that daily MPH therapy restores striatal DA neurotransmission after CCI.  相似文献   

7.
The levels of dopamine (DA) was determined by intracerebral microdialysis in vivo in KM rats selected for high audiogenic epilepsy, and in Wistar rats selected for nonsusceptibility to loud sound. The basal level of dopamine was 25% higher in the KM rats (P < 0.05). A single amphetamine injection (1 mg/kg body weight, intraperitoneously) caused a significant increase in the DA basal level up to 250-260% in animals of both genotypes. However, in Wistar rats, the level of DA reached maximum as soon as 20 min after amphetamine administration, whereas in KM rats, this happened only after 120 min. After a single injection of the antagonist of D2 and D3 dopamine receptors raclopride (1.2 mg/kg of body weight, intraperitoneously), an increase in the level of DA was similar in amplitude in rats of both genotypes (up to about 210%); however, this occurred 20-30 and 100 min after raclopride administration to Wistar and KM rats, respectively. This evidence suggests that the genetic defect of KM rats, namely, the high level of audiogenic epilepsy, is caused by abnormalities of the neuromediator brain systems and presumably accompanied by the regulatory gene dysfunction.  相似文献   

8.
The levels of dopamine (DA) was determined by intracerebral microdialysis in vivo in KM rats selected for high audiogenic epilepsy, and in Wistar rats selected for nonsusceptibility to loud sound. The basal level of dopamine was 25% higher in the KM rats (P < 0.05). A single amphetamine injection (1 mg/kg body weight, intraperitoneously) caused a significant increase in the DA basal level up to 250-260% in animals of both genotypes. However, in Wistar rats, the level of DA reached maximum as soon as 20 min after amphetamine administration, whereas in KM rats, this happened only after 120 min. After a single injection of the D2/D3 dopamine receptor antagonist raclopride (1.2 mg/kg of body weight, intraperitoneously), an increase in the level of DA was similar in amplitude in rats of both genotypes (up to about 210%); however, this occurred 20-30 and 100 min after raclopride administration to Wistar and KM rats, respectively. This evidence suggests that the genetic defect of KM rats, namely, the high level of audiogenic epilepsy, is caused by abnormalities of the neurotransmitter brain systems and presumably accompanied by the regulatory gene dysfunction.  相似文献   

9.
The in vivo microdialysis methodology was used to assess the effect of N-methyl-D-aspartate (NMDA) receptor ligands on glutamate (GLU), aspartate (ASP) and gamma-aminobutyrate (GABA) extracellular levels in the striatum of anaesthetized rats, after damage to the dopamine (DA) nigrostriatal pathway by injections of different doses of 6-hydroxydopamine (6-OH-DA) seven days earlier. The 6-OH-DA treated rats were divided into two groups, corresponding to animals with 20-80% (partial) and 85-99% (extensive) striatal DA tissue depletion, respectively. In rats with partial DA depletion, the striatal extracellular ASP levels significantly increased after intrastriatal dialysis perfusion with MK-801 (100 microM), an antagonist of NMDA receptors. In addition, a change in the pattern of local NMDA (500 microM)- induced efflux of ASP was observed in the striatum of these rats. However, in these partially DA-depleted striata no changes were found in basal extracellular levels of GLU, ASP and GABA or in NMDA- and MK-801-mediated effluxes of GLU and GABA relative to striata from sham rats. In contrast, rats with extensive striatal DA depletion exhibited a significant increase in ASP and GABA extracellular striatal levels, after intrastriatal dialysis perfusion with NMDA. In addition, the MK-801-mediated stimulation of extracellular ASP levels was accentuated along with the appearance of a MK-801 mediated increase in extracellular striatal GLU. Finally, basal extracellular levels of ASP, but not of GLU and GABA, were found to increase in extensive DA-depleted striata when compared to sham and partially DA-depleted striata. Thus, a differential regulation of basal and NMDA receptor-mediated release of transmitter amino acids occur seven days after partial and extensive DA-depleted striatum by 6-OH-DA-induced lesions of the nigrostriatal DA pathway. These findings may have implications as regards the participation of NMDA receptors in the compensatory mechanisms associated with the progress of Parkinson's disease, as well as in the treatment of this neurological disorder.  相似文献   

10.
The influence of early thyroidectomy (Tx) on changes in dopamine (DA) and noradrenaline (NA) during the postnatal period (30, 45 and 60 days old) was studied in the diencephalon and the rest of the brain of male and female rats. Thyroidectomy interfered with the normal growth of the animals, decreased brain weight and markedly influenced the developmental pattern of both DA and NA in the diencephalon. When compared with control values, the DA concentration, in 45- and 60-day-old Tx male rats, was 29 and 43% lower, respectively, and 21 and 43% lower, respectively, in Tx females. Diencephalic NA levels in Tx rats were also lower than those observed in controls, 15% inferior in 45- and 60-day-old males; 27 and 22% lower, respectively, in females. Thyroidectomy does not significantly alter the level of either amine in the rest of the brain.  相似文献   

11.
In the present study, the effects of age and diet on glucose disappearance and tissue-specific glucose uptake (R'g) were examined under basal or hyperinsulinemic, euglycemic conditions in male Sprague-Dawley rats. Rats were equicalorically fed either a high-starch diet (68% of kcal), high-fat diet (HFD; 45% of kcal), or high-sucrose diet (68% of kcal), beginning at either 5 (W; weanling), 10 (Y; young), 18 (M; mature), or 58 wk (O; older) of age for 5 wks (n = 6-9. group(-1) x diet(-1)). Body weight gain was not significantly different among dietary groups within a given age. Significant (P< 0.05) age effects were observed on basal and clamp free fatty acid concentrations. Significant diet effects were observed on basal and clamp triglyceride concentrations. There were significant diet and age effects on basal skeletal muscle R'g. This interaction was primarily due to an age-associated increase in basal R'g microg x g(-1). min(-1)) in HFD (gastrocnemius R'g: 0.9+/-0.2 in W, 1.1+/-0.2 in Y, 1.8+/-0.2 in M, 2.5+/-0.2 in O). Both age and diet significantly decreased insulin-stimulated muscle R'g. However, whereas age-associated reductions in both glucose-6-phosphate concentration and glycogen synthase activity were observed, significant diet effects were observed on glucose-6-phosphate concentrations only. Age significantly reduced basal and clamp adipose tissue R'g when expressed per gram of tissue but significantly increased R'g when expressed per total fat pad mass. These data suggest that diet-induced changes in peripheral glucose metabolism are modulated by age.  相似文献   

12.
Histological and histometric changes in the testes of albino Wistar rats were correlated. Wistar rats weighing between 180-240g were randomly divided into three groups of ten rats each. One group served as control and the rats were given normal saline. The second and third groups received 2mg/kg and 4mg/kg body weights of chloroquine phosphate daily for thirty days respectively. Seminiferous tubules of animals treated with chloroquine phosphate were irregular in shape and were also isolated compared to control. Marked disruption of the inter-tubular stroma of testes in the treated groups was also observed. Histometric variations in testicular tissue was observed in the experimental animals following treatment with chloroquine phosphate. The 2mg/kg body weight and 4mg/kg body weight animals recorded significantly lower [P< 0.05] relative germinal epithelial volume of 43.95 % and 32.70 % respectively when compared to the control (51.75 %). The volume of stroma in the third group (49.33 %) was significantly higher [P < 0.05] when compared to the control (16.83 %) and 2mg/kg body weight rats (22.83 %). We observed negative correlation coefficient between lumen and seminiferous tubular volume in the control group compared to the other groups which showed a positive correlation. Correlation between germinal epithelium and seminiferous tubular volume were positive in all groups. These findings have thrown more light on recognized histological changes by accurately grading these changes which offers objectivity and increased precision compared with direct visual appraisal.  相似文献   

13.
The study assessed the sensitivity of the thyrotrophs of hyperprolactinaemic patients to a physiological dose of dopamine (DA). Eight hyperprolactinaemic amenorrhoeic patients received 4-hour infusions of either DA (0.4 micrograms/kg x min) or glucose. Twelve normal women served as controls. In normal women the mean thyrotrophin (TSH) concentration declined significantly (P less than 0.05) from 81 +/- 6.6% of basal levels during glucose infusion to 59 +/- 5.8% of basal levels during DA infusion. In contrast DA infusion to hyperprolactinaemic patients caused no significant reduction in TSH levels compared to glucose infusion (DA infusion 68 +/- 4.7% of basal levels; glucose infusion 73 +/- 4.9% of basal levels). DA infusion caused a significant reduction in serum prolactin (PRL) levels both in hyperprolactinaemic patients (P less than 0.001) and normal women (P less than 0.02), but the PRL suppression was significantly (P less than 0.05) less pronounced in the hyperprolactinaemic patients, compared to normal women. We propose that the abnormal PRL as well as TSH secretion in hyperprolactinaemic amenorrhoeic patients may be due to a common defect. Both the lactotrophs and the thyrotrophs may be relatively insensitive to dopaminergic inhibition.  相似文献   

14.
The adrenal cortex plays an important role in adaptation to various forms of stress, including hypoxia. While physiological changes in the aldosterone metabolism during hypoxia have been extensively described, few studies have focused on the morphological changes in the adrenal glands under chronic hypoxia. We studied the ultrastructure of the zona glomerulosa of 6-month-old Wistar rats exposed to chronic normobaric hypoxia. Animals were divided into two groups: control (n=12) and hypoxic (n=12). In this latter group, the animals were kept at 7% O2 concentration after a gradual adaptation (21, 15, 12, 10, 8, 7 vol% O2). The duration of the study was 112 days. In comparison with normoxic rats, body weight and adrenal gland weight of hypoxic animals was significantly reduced by 18.5% (p=0.006) and 14.7% (p=0.001) respectively. The thickness of the zona glomerulosa decreased due to atrophy of cells. The main ultrastructural changes observed were: 1) a decrease in, or complete elimination of, lipid droplet content; 2) a marked increase in lysosome number; and 3) the presence of giant mitochondria. Our findings show that rats fail to adapt to severe chronic hypoxia. The ultrastructural changes in the zona glomerulosa found in the present study could reflect changes in the aldosterone pathway.  相似文献   

15.
The discovery that the endogenous opioid peptides contribute to the modulation of appetitive behavior and neuroendocrine function has raised questions as to whether disturbances of opioids contributes to the pathophysiology of eating disorders. To assess central nervous system (CNS) beta-endorphin in patients with anorexia nervosa we measured cerebrospinal fluid (CSF) beta-endorphin concentrations before, and at intervals after weight correction. In addition, we measured three sister peptides (beta-lipotropin, adrenocorticotropic hormone (ACTH), and the N-terminal fragment) derived from the same precursor molecule, pro-opiomelanocortin (POMC) to determine whether possible disturbances might extend to sister peptides. Underweight anorectics (58 +/- 5% of average body weight (ABW), n = 10) had significantly lower CSF concentrations of all 4 peptides compared to healthy controls (102 +/- 10% ABW, n = 11). CSF concentrations of all 4 POMC-related peptides were found to be significantly increased when the same anorectics were restudied 4 to 6 weeks after weight gain (83 +/- 4% ABW). After weight gain, levels of CSF beta-endorphin, beta-lipotropin, and ACTH were similar to controls, whereas levels of CSF N-POMC remained significantly less than controls. Another group of women, previously underweight with anorexia nervosa, but weight-restored (93 +/- 11% ABW, n = 12) for greater than 1 year had CSF concentrations of all 4 POMC-related peptides that were similar to controls. We conclude that underweight anorectics have state-associated disturbances of CNS beta-endorphin as well as other POMC-related peptides. These abnormalities are part of the neurobiological syndrome of anorexia nervosa and may contribute to the characteristic alterations in behavior and neuroendocrine function.  相似文献   

16.
The medial preoptic area (MPOA) is an important integrative site for male sexual behavior. Dopamine (DA) is released in the MPOA of male rats shortly before and during copulation. The recent presence of testosterone (T) may be necessary for this precopulatory increase in release. Previously, the postcastration loss of copulatory ability mirrored the loss of the DA response to an estrous female, and the restoration of copulation with exogenous T was concurrent with the reemergence of this DA response. The present study investigated the effectiveness of the two major metabolites of T in maintaining copulation and basal and female-stimulated DA levels. Adult male rats were castrated and received daily injections of estradiol benzoate (EB), dihydrotestosterone benzoate (DHTB), EB + DHTB, testosterone propionate (TP), or oil vehicle for 3 weeks. Microdialysis samples were collected from the MPOA during baseline conditions, exposure to an estrous female behind a barrier, and copulation testing. EB + DHTB- and TP-treated animals had normal basal DA levels and showed a precopulatory DA response, and most copulated normally. EB-treated castrates had high basal DA levels, but failed to show a female-stimulated increase; most intromitted, but none ejaculated. DHTB- and oil-treated groups had low basal levels of extracellular DA that did not increase during copulation testing; most failed to mount and none ejaculated. These results suggest that E maintains normal basal levels of extracellular DA in the MPOA, which are sufficient for suboptimal copulation, but that androgen is required for the female-stimulated increase in DA release and for facilitation of ejaculation.  相似文献   

17.
An extensive literature has documented adverse effects on mental health in anabolic androgenic steroids (AAS) abusers. Depression seems a common adverse reaction in AAS abusers. Recently it has been reported that in a rat model of AAS abuse stanozolol induces behavioural and biochemical changes related to the pathophysiology of major depressive disorder. In the present study, we used the model of AAS abuse to examine possible changes in the monoaminergic system, a neurobiological substrate of depression, in different brain areas of stanozolol-treated animals. Wistar rats received repeated injections of stanozolol (5mg/kg, s.c.), or vehicle (propylene glycol, 1ml/kg) once daily for 4weeks. Twenty-four hours after last injection, changes of dopamine (DA) and relative metabolite levels, homovanilic acid (HVA) and 3,4-dihydroxy phenylacetic acid (DOPAC), serotonin (5-HT) and its metabolite levels, 5-hydroxy indolacetic acid (5-HIAA), and noradrenaline (NA) amount were investigated in prefrontal cortex (PFC), nucleus accumbens (NAC), striatum (STR) and hippocampus (HIPP). The analysis of data showed that after chronic stanozolol, DA levels were increased in the HIPP and decreased in the PFC. No significant changes were observed in the STR or in the NAC. 5-HT and 5-HIAA levels were decreased in all brain areas investigated after stanozolol exposure; however, the 5-HIAA/5-HT ratio was not altered. Taken together, our data indicate that chronic use of stanozolol significantly affects brain monoamines leading to neurochemical modifications possibly involved in depression and stress-related states.  相似文献   

18.
The purpose of the present study was to determine the effects of diet composition and exercise on glycerol and glucose appearance rate (Ra) and on nonglycerol gluconeogenesis (Gneo) in vivo. Male Wistar rats were fed a high-starch diet (St, 68% of energy as cornstarch, 12% corn oil) for a 2-wk baseline period and then were randomly assigned to one of four experimental groups: St (n = 7), high-fat (HF; 35% cornstarch, 45% corn oil; n = 8), St with free access to exercise wheels (StEx; n = 7), and HF with free access to exercise wheels (HFEx; n = 7). After 8 wk, glucose Ra when using [3-3H]glucose, glycerol Ra when using [2H5]glycerol (estimate of whole body lipolysis), and [3-13C]alanine incorporation into glucose (estimate of alanine Gneo) were determined. Body weight and fat pad mass were significantly (P < 0.05) decreased in exercise vs. sedentary animals only. The average amount of exercise was not significantly different between StEx (3,212 +/- 659 m/day) and HFEx (3,581 +/- 765 m/day). The ratio of glucose to alanine enrichment and absolute glycerol Ra (micromol/min) were higher (P < 0.05) in HF and HFEx compared with St and StEx rats. In separate experiments, the ratio of 3H in C-2 to C-6 of glucose from 3H2O (estimate of Gneo from pyruvate) was also higher (P < 0.05) in HF (n = 5) and HFEx (n = 5), compared with St (n = 5) and StEx (n = 5) rats. Voluntary wheel running did not significantly increase estimated alanine or pyruvate Gneo or absolute glycerol Ra. Voluntary wheel running increased (P < 0.05) glycerol Ra when normalized to fat pad mass. These data suggest that a high-fat diet can increase in vivo Gneo from precursors that pass through pyruvate. They also suggest that changes in the absolute rate of glycerol Ra may contribute to the high-fat diet-induced increase in Gneo.  相似文献   

19.
Nakajima  Wako  Ishida  Akira  Ogasawara  Maya  Takada  Goro 《Neurochemical research》1998,23(9):1159-1165
Effects of N-methyl-D-aspartate (NMDA) and potassium on 5-day-old rat's brain were examined. We measured extracellular striatal monoamines such as dopamine (DA), 3,4 dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) using intracerebral microdialysis. After 3 h stabilization, pups received varying concentrations of NMDA (1–3 mM) and potassium (200–800 mM) by intrastriatal perfusion for 32 minutes. Increasing the concentration of NMDA and potassium induced a dose related DA increase (p < 0.001), whereas DOPAC, HVA, and 5-HIAA decreased significantly. Five days later the same animals were sacrificed and the weight reduction of their cerebral hemispheres was measured. The weight of the drug perfused side was significantly reduced compared with that of the contralateral one. We examined next the relationship between the level of maximum DA and the relative hemisphere weight reduction. The DA peak was highly correlated with the hemisphere weight reduction (r = 0.70, n = 52, p < 0.001 in the NMDA group, r = 0.83, n = 30, p < 0.001 in the potassium group, respectively). These data show that each treatment alter striatal monoamine metabolism in immature rat brain and that the extracellular DA peak is a potential early indicator to estimate brain injury.  相似文献   

20.
Gastric leptin and cholecystokinin (CCK) act on vagal afferents to induce cardiovascular effects and reflex inhibition of splanchnic sympathetic nerve discharge (SSND) and may act cooperatively in these responses. We sought to determine whether these effects are altered in animals that developed obesity in response to a medium high-fat diet (MHFD). Male Sprague-Dawley rats were placed on a low-fat diet (LFD; n = 8) or a MHFD (n = 24) for 13 wk, after which the animals were anesthetized and artificially ventilated. Arterial pressure was monitored and blood was collected for the determination of plasma leptin and CCK. SSND responses to leptin (15 μg/kg) and CCK (2 μg/kg) administered close to the coeliac artery were evaluated. Collectively, MHFD animals had significantly higher plasma leptin but lower plasma CCK levels than LFD rats (P < 0.05), and this corresponded to attenuated or reversed SSND responses to CCK (LFD, -21 ± 2%; and MHFD, -12 ± 2%; P < 0.05) and leptin (LFD, -6 ± 2%; and MHFD, 4 ± 1%; P < 0.001). Alternatively, animals on the MHFD were stratified into obesity-prone (OP; n = 8) or obesity-resistant (OR; n = 8) groups according to their weight gain falling within the upper or lower tertile, respectively. OP rats had significantly higher resting arterial pressure, adiposity, and plasma leptin but lower plasma CCK compared with LFD rats (P < 0.05). The SSND responses to CCK or leptin were not significantly different between OP and OR animals. These results demonstrate that a high-fat diet is associated with blunted splanchnic sympathoinhibitory responses to gastric leptin and CCK and may impact on sympathetic vasomotor mechanisms involved in circulatory control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号