首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
The objectives of this study were to characterize the effects of plasma lipoproteins on prostacyclin (PGI2) production by the Langendorff-perfused rabbit heart, and to determine the mechanism of lipoprotein-induced cardiac PGI2 production. PGI2 production by perfused rabbit hearts was stimulated by injections of rabbit very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL). HDL was much more effective than equivalent doses of VLDL or LDL. Infusion of HDL at a physiological concentration stimulated cardiac PGI2 output by 417%, but infusion of VLDL or LDL was ineffective. Cardiac PGI2 production increased from 47% to 340% with increasing doses of HDL. The release of cardiac PGI2 in response to injections or infusions of HDL occurred rapidly; maximal release of PGI2 was reached within 2 min after exposure to HDL. Injections of HDL stimulated the production of [3H]arachidonic acid, [3H]prostaglandin E2, [3H]prostaglandin F2 alpha, and [3H]6-keto-prostaglandin F1 alpha from hearts after prelabeling of cardiac lipids with [3H]arachidonic acid. These results indicate that plasma lipoproteins, specifically HDL, stimulate PGI2 production by the isolated rabbit heart. The mechanism by which HDL increases cardiac PGI2 production may involve the mobilization of cardiac arachidonic acid for PGI2 synthesis.  相似文献   

2.
Porcine liver membranes are capable of high affinity binding of homologous low density lipoproteins (LDL). Binding is time and temperature dependant and substrate saturable. High affinity binding sites are half saturated at 11 μg/ml lipoprotein-protein. The binding of 125I-LDL is inhibited by unlabelled homologous LDL, very low density lipoproteins (VLDL) and high density lipoproteins (HDL) and also be human LDL and HDL, but not by unrelated proteins tested. The binding and displacement patterns with membranes from several other porcine tissues are similar to those of liver membranes. These results suggest the presence of “lipoprotein binding sites” in liver membranes which recognize structural features common to the lipoproteins and further indicate that liver membranes are not unique in their ability to bind LDL.  相似文献   

3.
Stimulated peripheral blood mononuclear cells (PBMC) can oxidize normal lipoproteins, and sufficiently oxidized lipoproteins are cytotoxic. However, the role of lipid peroxidation in the inhibition of mitogen-stimulated PBMC proliferation by physiologic concentrations of normal lipoproteins is unclear. In the present investigation, normal low density lipoprotein (LDL) and very low density lipoprotein (VLDL) suppressed [3H]thymidine incorporation and gamma interferon production in concanavalin A-stimulated PBMC without causing cell death. This suppression was accompanied by parallel increases in lipid peroxidation products measured as thiobarbituric acid reactive substances (TBARS). In contrast, high density lipoprotein (HDL) failed to inhibit PBMC and TBARS remains low. Differences between the PBMC suppression from LDL, VLDL, and HDL were best accounted for by normalizing the lipoprotein concentrations by their total lipid content. Moreover, the antioxidants superoxide dismutase and butylated hydroxytoluene each substantially ameliorated the inhibition of PBMC caused by LDL, and reduced the levels of lipid peroxidation products that were generated. Altogether, these results suggest that reactive oxygen species generated by stimulated PMBC may cause oxidative alterations of normal lipoproteins that may, in turn, account for much of the previously reported inhibition of PBMC by normal lipoproteins.  相似文献   

4.
Oxidative modification of lipoproteins may play a crucial role in the pathogenesis of atherosclerosis. This study was designed to examine whether increased lipid peroxides and/or oxidative susceptibility of plasma lipoproteins occur in patients with coronary artery disease. The levels of lipid peroxides, estimated as thiobarbituric acid-reactive substances (TBARS), were significantly greater in the plasma and very low density lipoprotein (VLDL) of symptomatic patients with coronary artery disease than in those of healthy persons, but the TBARS levels of low density lipoprotein (LDL) and high density lipoprotein (HDL) showed insignificant difference between patients and normals. To evaluate the oxidative susceptibility of lipoproteins, we employed in vitro Cu2+ oxidation of lipoproteins monitored by changes in fluorescenece, TBARS level, trinitrobenzene sulfonic acid (TNBS) reactivity, apolipoprotein immunoreactivity and agarose gel electrophoretic mobility. While VLDL and LDL of normal controls were oxidazed at 5–10 μM Cu2+, pooled VLDL and LDL of patients with coronary artery disease were oxidized at 1–2.5 μM Cu2+, i.e., at relatively lowver oxidative stress. At 5 μM Cu2+, VLDL and LDL of patients with coronary artery disease still showed at faster oxidation rate, judged by the rate of fluorescence increase, higher TBARS level, less TNBS reactivity, greater change in apo B immunoreactivity and higher electrophoretic mobility than those of normal controls. However, the difference on the oxidizability of HDL was insignificant for patients vs. normals. In conclusion, we have shown that plasm VLDL and LDL of patients with coronary artery disease are more susceptible to in vitro oxidative modification than those of health persons. The data suggest that enhanced oxidizability of plasma lipoproteins may be important factor influencing the development of coronary artery disease.  相似文献   

5.
Free cholesterol is a potent regulator of lipid transfer protein function   总被引:6,自引:0,他引:6  
This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface.  相似文献   

6.
Poly-β-hydroxybutyrate (PHB) is an amphiphilic lipid that has been found to be a ubiquitous component of the cellular membranes of bacteria, plants and animals. The distribution of PHB in human plasma was investigated using chemical and immunological methods. PHB concentrations proved highly variable; in a random group of 24 blood donors, total plasma PHB ranged from 0.60 to 18.2 mg/l, with a mean of 3.5 mg/l. In plasma separated by density gradient ultracentrifugation, lipoproteins carried 20–30% of total plasma PHB; 6–14% in the very low density lipoproteins (VLDL), 8–16% in the low density lipoproteins (LDL), and < 3% in the high density lipoproteins (HDL). The majority of plasma PHB (70–80%) was found in protein fractions of density > 1.22 g/ml. Western blot analysis of the high density fractions with anti-PHB F(ab')2 identified albumin as the major PHB-binding protein. The affinity of albumin for PHB was confirmed by in vitro studies which demonstrated transfer of 14C-PHB from chloroform into aqueous solutions of human and bovine serum albumins. PHB was less tightly bound to LDL than to other plasma components; the polymer could be isolated from LDL by extraction with chloroform, or by digestion with alkaline hypochlorite, but it could not similarly be recovered from VLDL or albumin. PHB in the LDL correlated positively with total plasma cholesterol and LDL cholesterol, and negatively with HDL cholesterol. The wide concentration range of PHB in plasma, its presence in VLDL and LDL and absence in HDL, coupled with its physical properties, suggest it may have important physiological effects.  相似文献   

7.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

8.
To clarify effects of pseudomonal leukocidin (42.5 kd) on chemiluminescence (CL) production of polymorphonuclear leukocytes (PMNs), rabbit PMNs were stimulated by zymosan or phorbol myristate acetate (PMA) after pretreatment with the leukocidin, which by itself stimulated little chemiluminescence response. The extent of CL responses stimulated by zymosan or PMA was respectively 5.3- or 3.5-fold greater in leukocidin (1.5 μg/ml)-pretreated PMNs than in non-pretreated ones. The priming effect of the leukocidin was greater than that of G-CSF and related to some steps before NADPH oxidase activation. The increased CL productions might be related to tissue damages caused by pseudomonal infections in vivo.  相似文献   

9.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

10.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

11.
In assessing risk factors of coronary heart disease, a membrane immunochromatographic system that minimizes requirements of instrument and reagent handling was investigated by utilizing high-density lipoprotein (HDL) cholesterol (HDL-C) as model analyte. The system is composed of four functional membrane strip pads connected in sequence as follows (from the bottom): immunoseparation based on the biotin-streptavidin reaction; catalytic conversion of cholesterol to hydrogen peroxide; production of a colorimetric signal; and induction of a continuous wicking of medium. For immunochromatography, a monoclonal antibody, specific to apolipoprotein B100 that is present on the surfaces of low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL), with a high binding constant (5 x 10(10) L/mol), was raised and chemically conjugated to streptavidin. The conjugate was first reacted with lipoprotein particles, and this mixture was absorbed by the capillary action into the biotin pad of the system. After being transferred by medium, immunocapture of LDL and VLDL particles onto the biotin pad took place, and in situ generation of a colorimetric signal in proportion to HDL-C occurred consecutively. The capture was selective as well as effective (minimum 88% of LDL and VLDL in clinical concentration ranges), and the detection limit of the HDL-C was far lower than 20 mg per 100 mL. The same concept may also be applicable to LDL cholesterol measurement provided suitable antibodies specific to HDL and VLDL are available.  相似文献   

12.
The aim of this study was to determine the effect of oleic acid and insulin on the secretion of lipoproteins by HepG2 cells grown in minimum essential medium. Triglycerides were the major neutral lipid (57% of total) and apoB was the predominant apolipoprotein (56% of total) secreted by these cells. The addition of oleate resulted in a two-fold increase in the concentration of neutral lipids but only a slight to moderate increase in the apolipoprotein (A-I, A-II, B, and E) levels. The secretion of very low density lipoproteins (VLDL) was stimulated by 425%, low density lipoproteins (LDL) by 77%, and high density lipoproteins (HDL) by 68%. Whereas neutral lipid composition of LDL was unchanged, the VLDL particles contained a significantly higher percentage of triglyceride and lower percentages of cholesterol and cholesteryl esters compared with VLDL secreted in the absence of oleate. Oleate had no significant effect on the composition of apolipoproteins in VLDL, LDL and HDL. In basal medium, insulin caused a significant decrease in the secretion of neutral lipids and apolipoproteins, particularly triglycerides and apoB. In addition to a 60-68% reduction in the total concentration of VLDL and LDL, insulin altered their composition by producing particles that had a significantly lower content of triglycerides, contained less apoB, and were deficient in apoE. There were no major changes in the concentration or composition of HDL particles. Insulin had a similar but less pronounced effect on the concentration and composition of lipoproteins secreted in the presence of oleate. The increased accumulation of triglycerides in the HepG2 cells concomitant with their reduced levels in the medium suggests that insulin may affect the secretion rather than synthesis of triglyceride-rich lipoproteins.  相似文献   

13.
The density profile of serum lipoproteins and their lipid composition was studied in 12 adult, female harbour seals. The animals were sampled after an approximate 20 hr fast. The density profile of lipoproteins showed that the harbour seals displayed a distinct VLDL (density less than 1.006 g/ml) and HDL band (density about 1.125 g/ml), but no clear LDL band. There was a rather diffuse population of lipoproteins in the density range of 1.019-1.100 g/ml. Mean serum total cholesterol concentration was 5.7 mmol/l; about 60% of this cholesterol was located in the HDL fraction (density greater than 1.063 g/ml). The fasted seals were found to carry 4% of serum total lipids in chylomicrons. These lipoproteins consisted of 51% of triaclyglycerols (on the basis of total chylomicron lipids). The LDL (defined as heparin-manganese precipitable lipoproteins in VLDL and chylomicron-deficient serum) contained 49% of cholesterol and 43% of phospholipids (on the basis of total LDL lipids). The HDL (defined as heparin-manganese soluble lipoproteins in VLDL and chylomicron-deficient serum) contained 36% of cholesterol and 58% of phospholipids (on the basis of total HDL lipids).  相似文献   

14.
The binding characteristics of very-low-density (VLDL), low-density (LDL) and high-density (HDL) lipoprotein fractions to a purified human term placental microvillous membrane preparation were determined. Binding of LDL was saturable with a maximal binding capacity of 270 ng LDL protein per mg of membrane protein. Scatchard analysis revealed the presence of a single population of 3.4 · 1011 sites per mg of membrane protein and a mean affinity constant of 5.8 · 10−9 M. Binding of VLDL was also saturable but the maximal capacity was 4.5-times greater than that of LDL. The Scatchard analysis revealed the presence of 2.1 · 1011 binding sites and an affinity constant nearly one order of magnitude greater than that of LDL. Binding of HDL showed less tendency to saturate. Scatchard analysis showed a similar number of receptor sites to that calculated for VLDL and LDL but the affinity constant for HDL was over 100-fold less than that of VLDL. Self- and cross-inhibition studies of VLDL and LDL binding revealed that VLDL was better at blocking the binding of LDL than was LDL itself. This preferential binding of VLDL suggests that this lipoprotein fraction could be an important source of cholesterol for placental progesterone production.  相似文献   

15.
The plasma lipoproteins of estrogen-treated and untreated sexually immature hens have been compared with respect to their concentration in plasma, protein and lipid composition, particle size, and and apoprotein composition. Administration of diethylstilbestrol resulted in a 400-fold rise in the concentration of very low density lipoprotein (VLDL), a 70-fold rise in low density lipoprotein (LDL), and a marked reduction in high density lipoprotein (HDL) protein. It also resulted in the production of LDL and HDL which were enriched in triacylglycerol, while the proportion of cholesterol in all three lipoprotein fractions decreased. In contrast to the lipoproteins from untreated birds, lipoproteins of density less than 1.06 g/ml from estrogen-treated birds were not clearly separable into discrete VLDL and LDL fractions, but appeared to be a single ultracentrifugal class. The apoprotein composition of VLDL and LDL from untreated birds differed from each other; however, the apoprotein patterns of VLDL and LDL from estrogen-treated birds were indistinguishable: both contained a large amount of low molecular weight protein in addition to the high molecular weight component that predominates in the untreated state. The apoprotein composition of HDL was also markedly altered by estrogen administration: the 28,000 mol. wt. protein (apo A-I) decreased in amount from 65% to less than 5% of the total, while a low molecular weight (Mr = 14,000) protein and as yet poorly defined high molecular weight components became predominant. These observations indicate that the hyperlipidemia induced by estrogen administration is accompanied by marked alterations, both qualitative and quantitative, in the plasma lipoproteins.  相似文献   

16.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

17.
Kinetics of apo B and apo AI were assessed in 8 patients with mixed hyperlipidemia at baseline and after 8 weeks of atorvastatin 80 mg q.d. and micronised fenofibrate 200 mg q.d. in a cross-over study. Both increased hepatic production and decreased catabolism of VLDL accounted for elevated cholesterol and triglyceride concentrations at baseline. Atorvastatin significantly decreased triglyceride, total, VLDL and LDL cholesterol and apo B concentrations (-65%, -36%, -57%, -40% and -33%, respectively, P<0.05). Kinetic analysis revealed that atorvastatin stimulated the catabolism of apo B containing lipoproteins, enhanced the delipidation of VLDL1 and decreased VLDL1 production. Fenofibrate lowered triglycerides and VLDL cholesterol (-57% and -64%, respectively, P<0.05) due to enhanced delipidation of VLDL1 and VLDL2 and increased VLDL1 catabolism. Changes of HDL particle composition accounted for the increase of HDL cholesterol during atorvastatin and fenofibrate (18% and 23%, P<0.01). Only fenofibrate increased apo AI concentrations through enhanced apo AI synthesis (45%, P<0.05). We conclude that atorvastatin exerts additional beneficial effects on the metabolism of apo B containing lipoproteins unrelated to an increase in LDL receptor activity. Fenofibrate but not atorvastatin increases apo AI production and plasma turnover.  相似文献   

18.
Lecithin: Cholesterol Acyltransferase (LCAT) esterified relatively small amounts of cholesterol from very low density lipoproteins (VLDL), low density lipoproteins (LDL) or high density lipoproteins (HDL) in the presence of 5% human serum albumin (HSA). On the other hand, in the presence of very high density (>1.225 g/ml) plasma fraction (F-4), the enzyme esterified cholesterol from VLDL at considerably higher rates than from LDL or HDL. VLDL together with some component present in the very high density plasma fraction (F-4) may thus provide a highly efficient complex resulting in a favorable configuration of substrate lipids for the enzyme.  相似文献   

19.
20.
Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, we examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with 125I-lipoproteins [human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)]. The media were then analyzed for lipoprotein protein coat degradation products (mainly 125I-monoiodotyrosine) and progestin [mainly 20α-dihydroprogesterone (20α-DHP)]. In the absence of FSH and androgen, 2 × 105 granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20α-DHP. The addition of 10?7 M androstenedione (A), testosterone (T), or 5α-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20α-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20α-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20α-DHP production. The addition of a 10-fold excess cyproterone acetate (an anti-androgen) inhibited the effect of T, suggesting that the action of T was mediated by the granulosa cell androgen receptor. Androgen and FSH also synergistically stimulated the production of 3H-progestin when the granulosa cells were incubated with either 3H-cholesterol ester core labeled human HDL or similarly labeled human LDL. This report demonstrates that androgen, in combination with FSH, augments the steroidogenic pathway of the granulosa cell from the degradation of lipoprotein and utilization of the cholesterol ester core, to the production of progestin product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号