共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Paul S. Burgoyne 《BioEssays : news and reviews in molecular, cellular and developmental biology》1998,20(5):363-366
For several decades, the mammalian Y chromosome was considered a genetic “desert,” with the testis determinant being the sole survivor of the attrition that followed the chromosome's inception. Aside from the addition of a genetic factor required for spermatogenesis to the human Y chromosome in 1976, this view held sway until the mid-1980s. The ensuing molecular genetic analysis, culminating in the recent paper in Science by Lahn and Page,1 has identified more than 20 genes or gene families on the human Y. This has led to a reappraisal of the evolution and functions of this unique chromosome. BioEssays 20 :363–366, 1998. © 1998 John Wiley & Sons Inc. 相似文献
3.
Genetic sex determination in an XX-XY chromosome system can be realized through a locus on the Y chromosome that makes the undifferentiated gonad develop into a testis. Although this mechanism is widespread, only in two cases so far have the corresponding master male sex-determining genes been identified. One is Sry, which initiates testes determination in most mammals. The other is dmrt1bY (syn. dmy), from the fish medaka, Oryzias latipes. The mammalian Y is roughly estimated to be over 200 million years old. The medaka Y may be considerably younger. A comparative analysis of the genus Oryzias revealed that one sister species of the medaka has dmrt1bY on a homologous Y chromosome, whereas in another closely related species only a non-sex-linked pseudogene is present. In all other species, dmrt1bY was not detected. The divergence time for the different species was determined with mitochondrial DNA sequences. The timing was confirmed by independent calculations based on dmrt1 sequences. We show that the medaka sex-determining gene originated approximately 10 million years ago. This makes dmrt1bY and the corresponding Y chromosome the youngest male sex-determining system, at least in vertebrates, known so far. 相似文献
4.
The mammalian X and Y chromosomes are very different in size and gene content. The Y chromosome is much smaller than the X and consists largely of highly repeated non-coding DNA, containing few active genes. The 65-Mb human Y is homologous to the X over two small pseudoautosomal regions which together contain 13 active genes. The heterochromatic distal half of the human Yq is entirely composed of highly repeated non-coding DNA, and even the euchromatic portion of the differential region is largely composed of non-coding repeated sequences, amongst which about 30 active genes are located. The basic marsupial Y chromosome (about 10 Mb) is much smaller than that of humans or other eutherian mammals. It appears to include no PAR, since it does not undergo homologous pairing, synaptonemal complex formation or recombination with the X. We show here that the tiny dunnart Y chromosome does not share cytogenetically detectable sequences with any other chromosome, suggesting that it contains many fewer repetitive DNA sequences than the human or mouse Y chromosomes. However, it shares several genes with the human and/or mouse Y chromosome, including the sex determining gene SRY and the candidate spermatogenesis gene RBMY, implying that the marsupial and eutherian Y are monophyletic. This minimal mammalian Y chromosome might provide a good model Y in which to hunt for new mammalian Y specific genes. 相似文献
5.
6.
Changyi Xiao Jingjin Li Tanghui Xie Jianhai Chen Sijia Zhang Salma Hassan Elaksher Fan Jiang Yaoxin Jiang Lu Zhang Wei Zhang Yue Xiang Zhenyang Wu Shuhong Zhao Xiaoyong Du 《Ecology and evolution》2021,11(12):7779
The mammalian Y chromosome offers a unique perspective on the male reproduction and paternal evolutionary histories. However, further understanding of the Y chromosome biology for most mammals is hindered by the lack of a Y chromosome assembly. This study presents an integrated in silico strategy for identifying and assembling the goat Y‐linked scaffolds using existing data. A total of 11.5 Mb Y‐linked sequences were clustered into 33 scaffolds, and 187 protein‐coding genes were annotated. We also identified high abundance of repetitive elements. A 5.84 Mb subset was further ordered into an assembly with the evidence from the goat radiation hybrid map (RH map). The existing whole‐genome resequencing data of 96 goats (worldwide distribution) were utilized to exploit the paternal relationships among bezoars and domestic goats. Goat paternal lineages were clearly divided into two clades (Y1 and Y2), predating the goat domestication. Demographic history analyses indicated that maternal lineages experienced a bottleneck effect around 2,000 YBP (years before present), after which goats belonging to the A haplogroup spread worldwide from the Near East. As opposed to this, paternal lineages experienced a population decline around the 10,000 YBP. The evidence from the Y chromosome suggests that male goats were not affected by the A haplogroup worldwide transmission, which implies sexually unbalanced contribution to the goat trade and population expansion in post‐Neolithic period. 相似文献
7.
Söderberg C Wraith A Ringvall M Yan YL Postlethwait JH Brodin L Larhammar D 《Journal of neurochemistry》2000,75(3):908-918
Neuropeptide Y (NPY) and peptide YY (PYY) are related 36-amino acid peptides. NPY is widely distributed in the nervous system and has several physiological roles. PYY serves as an intestinal hormone as well as a neuropeptide. We report here cloning of the npy and pyy genes in zebrafish (Danio rerio). NPY differs at only one to four amino acid positions from NPY in other jawed vertebrates. Zebrafish PYY differs at three positions from PYY from other fishes and at 10 positions from mammals. In situ hybridization showed that neurons containing NPY mRNA have a widespread distribution in the brain, particularly in the telencephalon, optic tectum, and rhombencephalon. PYY mRNA was found mainly in brainstem neurons, as reported previously for vertebrates as divergent as the rat and the lamprey, suggesting an essential role for PYY in these neurons. PYY mRNA was observed also in the telencephalon. These results were confirmed by immunocytochemistry. As in the human, the npy gene is located adjacent to homeobox (hox) gene cluster A (copy a in zebrafish), whereas the pyy gene is located close to hoxBa. This suggests that npy and pyy arose from a common ancestral gene in a chromosomal duplication event that also involved the hox gene clusters. As zebrafish has seven hox clusters, it is possible that additional NPY family genes exist or have existed. Also, the NPY receptor system seems to be more complex in zebrafish than in mammals, with at least two receptor genes without known mammalian orthologues. 相似文献
8.
Y chromosome diversity and paternal origin of Chinese cattle 总被引:2,自引:0,他引:2
Ran Li Wen-Mei Xie Zhen-Hua Chang Shao-Qiang Wang Rui-Hua Dang Xian-Yong Lan Hong Chen Chu-Zhao Lei 《Molecular biology reports》2013,40(12):6633-6636
To determine the Y chromosome genetic diversity and paternal origin of Chinese cattle, 369 bulls from 17 Chinese native cattle breeds and 30 bulls from Holstein and four bulls from Burma were analyzed using a recently discovered USP9Y marker that could distinguish between taurine and indicine cattle more efficiently. In total, the taurine Y1, Y2 haplogroup and indicine Y3 haplogroup were detected in 7 (1.9 %), 193 (52.3 %) and 169 (45.8 %) individuals of 17 Chinese native breeds, respectively, although these frequencies varied amongst the Chinese native cattle breeds examined. Y2 dominates in northern China (91.4 %), while Y3 dominates in southern China (81.2 %). Central China is an admixture zone with Y2 predominating overall (72.0 %). Our results demonstrate that Chinese cattle have two paternal origins, one from B. taurus (Y2) and the other from B. indicus (Y3). The Y1 haplogroup may originate from the imported beef cattle breeds in western countries. The geographical distributions of the Y2 and Y3 haplogroup frequencies reveal a pattern of male indicine introgression from south to north China, and male taurine introgression from north to south China. 相似文献
9.
Claus Nielsen 《Biological reviews of the Cambridge Philosophical Society》2017,92(1):316-325
The chordates are usually characterized as bilaterians showing deuterostomy, i.e. the mouth developing as a new opening between the archenteron and the ectoderm, serial gill pores/slits, and the complex of chorda and neural tube. Both numerous molecular studies and studies of morphology and embryology demonstrate that the neural tube must be considered homologous to the ventral nerve cord(s) of the protostomes, but the origin of the ‘new’ mouth of the deuterostomes has remained enigmatic. However, deuterostomy is known to occur in several protostomian groups, such as the chaetognaths and representatives of annelids, molluscs, arthropods and priapulans. This raises the question whether the deuterostomian mouth is in fact homologous with that of the protostomes, viz. the anterior opening of the ancestral blastopore divided through lateral blastopore fusion, i.e. amphistomy. A few studies of gene expression show identical expression patterns around mouth and anus in protostomes and deuterostomes. Closer studies of the embryology of ascidians and vertebrates show that the mouth/stomodaeum differentiates from the anterior edge of the neural plate. Together this indicates that the chordate mouth has moved to the anterior edge of the blastopore, so that the anterior loop of the ancestral circumblastoporal nerve cord, which is narrow in the protostomes, has become indistinguishable. In the vertebrates, the mouth has moved further around the anterior pole to the ‘ventral’ side. The conclusion must be that the chordate mouth (and that of the deuterostomes in general) is homologous to the protostomian mouth and that the latest common ancestor of protostomes and deuterostomes developed through amphistomy, as suggested by the trochaea theory. 相似文献
10.
11.
The Y chromosome that lost the male-determining function behaves as an X chromosome in the medaka fish, Oryzias latipes 下载免费PDF全文
The medaka, Oryzias latipes, has an XX/XY sex-determination system, and a Y-linked DM-domain gene, DMY, is the sex-determining gene in this species. Since DMY appears to have arisen from a duplicated copy of the autosomal DMRT1 gene approximately 10 million years ago, the medaka Y chromosome is considered to be one of the youngest male-determining chromosomes in vertebrates. In the screening process of sex-reversal mutants from wild populations, we found a population that contained a number of XY females. PCR, direct sequencing, and RT-PCR analyses revealed two different null DMY mutations in this population. One mutation caused loss of expression during the sex-determining period, while the other comprised a large deletion in putative functional domains. YY females with the mutant-type DMY genes on their Y chromosomes were fully fertile, indicating that the X and Y chromosomes were functionally the same except for the male-determining function. In addition, we investigated the frequencies of the sex chromosome types in this population over four successive generations. The Y chromosomes bearing the mutant-type DMY genes were detected every year with no significant differences in their frequencies. These results demonstrate that aberrant Y chromosomes behaving as X chromosomes have been maintained in this population. 相似文献
12.
A group of enzymes known to be involved in group translocation-type transport mechanisms for the uptake of a variety of nucleotide precursors are enzymatically active both in their natural membrane milieu and in aqueous solution. The activity in aqueous solution markedly differ, however, from the enzymatic activity when the enzyme is membrane localized. The adenine phosphoribosyltransferase (PRT) of E. coli (Hochstadt-Ozer and Stadtman, 1971 a) is capable of carrying out an exchange reaction between the base moieties of adenine and AMP without requiring P-ribose-PP as an intermediate; the enzyme in aqueous solution requires P-ribose-PP, indicating a different reaction mechanism in the two environments. Like the adenine PRT of E. coli, the hypo-xanthine PRT of Salmonella typhimurium (Jackman and Hochstadt, 1976) also carried out an exchange reaction on the membrane only and also is more sensitive to a number of inhibitors in aqueous solution relative to the sensitivity when embedded in the membrane. In addition, however, the hypoxanthine PRT, while restricted to hypoxanthine as a substrate in the membrane, also accepts guanine as substrate in its soluble form. The membrane capacities reflect the in situ capacities of the enzyme and the gain of guanine specificity was determined in a guanine PRT deletion strain (Jackman and Hochstadt, 1976). Finally, in mammalian cell lines purine nucleoside phosphorylase, which translocates the ribose moiety of inosine across the plasma membrane of mouse fibroblasts undergoes a 30-fold increase in substrate turnover number upon liberation from the membrane. These data raise two important caveats with respect to study of membrane enzymes and transport. Firstly, an enzyme once solubilized and found to differ kinetically from substrate transport in situ cannot be excluded from participating in translocations in the membrane on the basis of its activity in aqueous solution. Secondly, an enzyme which “appears” largely soluble upon cell rupture cannot be assumed to be a cycloplasmic enzyme because the majority of the solubilized activity may represent only a small fraction of the enzyme molecules highly activated concomitant to their solubilization. In this latter case the ability to activate enzyme still residing on the membrane (e.g., with detergents) would be necessary in order to estimate total membrane associated activity after cell rupture. 相似文献
13.
WEN Bo SHI Hong REN Ling XI Huifeng LI Kaiyuan ZHANG Wenyi SU Bing SI Shiheng JIN Li XIAO Chunjie 《中国科学:生命科学英文版》2004,47(1):1-10
The Mosuo, living in the Lugu Lake area in northwest Yunnan Province, China, is the only matriarchal population in China. The Mosuo was officially identified as Naxi nationality although its relationship with Naxi remains controversial. We studied the genetic relationship between the Mosuo and five other ethnic groups currently residing in northwest Yunnan, i.e. Naxi, Tibetan, Bai, Yi and Pumi, by typing the genetic variations in mtDNA HVS1 and 21 Y chromosome markers (13 SNPs & 8 STR markers). We showed that the maternal lineages of the Mosuo bear the strongest resemblance with those found in Naxi while its paternal lineages are more similar to those that are prevalent in Yunnan Tibetan. The marked difference between paternal and maternal lineages may be attributable to the genetic history, matriarchal structure, and visiting marriage. 相似文献
14.
The Mosuo, living in the Lugu Lake area in northwest Yunnan Province, China, is the only matriarchal population in China.
The Mosuo was officially identified as Naxi nationality although its relationship with Naxi remains controversial. We studied
the genetic relationship between the Mosuo and five other ethnic groups currently residing in northwest Yunnan, i.e. Naxi,
Tibetan, Bai, Yi and Pumi, by typing the genetic variations in mtDNA HVS1 and 21 Y chromosome markers (13 SNPs & 8 STR markers).
We showed that the maternal lineages of the Mosuo bear the strongest resemblance with those found in Naxi while its paternal
lineages are more similar to those that are prevalent in Yunnan Tibetan. The marked difference between paternal and maternal
lineages may be attributable to the genetic history, matriarchal structure, and visiting marriage. 相似文献
15.
JAKOB VINTHER PETER JELL GEORGE KAMPOURIS RYAN CARNEY RACHEL A. RACICOT DEREK E. G. BRIGGS 《Palaeontology》2012,55(5):1007-1019
Abstract: Multiplacophorans are Palaeozoic (Silurian to Permian) stem group polyplacophorans with 17 shell plates in a particular arrangement of single terminal plates separated by three columns of plates forming five transverse rows. Their distinctive morphology has prompted disparate interpretations of their relationship to polyplacophorans. Some features are strikingly similar to crown group polyplacophorans and even to some living families. Here we describe two Devonian forms, Protobalanus spinicoronatus sp. nov., a hercolepadid from northeast Ohio, USA, and Hannestheronia australis gen. et sp. nov., a strobilepid from South Africa. Using the results from a Bayesian relaxed molecular clock to test competing scenarios of the relationship of multiplacophorans to crown group polyplacophorans, we demonstrate that multiplacophorans are stem group polyplacophorans in which certain characters of the crown group evolved convergently. 相似文献
16.
Pawel Burkhardt Simon G. Sprecher 《BioEssays : news and reviews in molecular, cellular and developmental biology》2017,39(10)
The evolutionary origin of synapses and neurons is an enigmatic subject that inspires much debate. Non‐bilaterian metazoans, both with and without neurons and their closest relatives already contain many components of the molecular toolkits for synapse functions. The origin of these components and their assembly into ancient synaptic signaling machineries are particularly important in light of recent findings on the phylogeny of non‐bilaterian metazoans. The evolution of synapses and neurons are often discussed only from a metazoan perspective leaving a considerable gap in our understanding. By taking an integrative approach we highlight the need to consider different, but extremely relevant phyla and to include the closest unicellular relatives of metazoans, the ichthyosporeans, filastereans and choanoflagellates, to fully understand the evolutionary origin of synapses and neurons. This approach allows for a detailed understanding of when and how the first pre‐ and postsynaptic signaling machineries evolved. 相似文献
17.
18.
Johannes H. P. Hackstein Ron Hochstenbach Elisabeth Hauschteck-Jungen Leo W. Beukeboom 《BioEssays : news and reviews in molecular, cellular and developmental biology》1996,18(4):317-323
The Y chromosomes of most Drosophila species are necessary for male fertility but they are not involved in sex determination. They have many puzzling properties that resemble the effects caused by B chromosomes. Classical genetic and molecular studies reveal substantial affinities between Y and B chromosomes and suggest that the Y chromosomes of Drosophila are not degenerated homologues of the X chromosomes, but rather that their Y chromosomes evolved as specialized supernumeraries similar to classical B chromosomes. 相似文献
19.
A L Hughes 《Molecular biology and evolution》1991,8(2):185-201
CD1 antigens are cell-surface glycoproteins which have a molecular structure which is similar (consisting of extracellular domains alpha 1, alpha 2, and alpha 3, a transmembrane portion, and a cytoplasmic tail) to that of class I MHC molecules. Phylogenetic analysis of mammalian CD1 DNA sequences revealed that these genes are more closely related to the class I major histocompatibility complex (MHC) than to the class II MHC and that mammalian genes are more closely related to avian class I MHC genes than they are to mammalian class I MHC genes. The CD1 genes form a multigene family with different numbers of genes in different species (five in human, eight in rabbit, and two in mouse). Known CD1 genes are grouped into the following three families, on the basis of evolutionary relationship: (1) the human HCD1B gene and a partial sequence from the domestic rabbit, (2) the human HCD1A and HCD1C genes, and (3) the human HCD1D and HCD1E genes plus the two mouse genes and a sequence from the cottontail rabbit. The alpha 1 and alpha 2 domains of CD1 are much less conserved at the amino acid level than are the corresponding domains of class I MHC molecules, but the alpha 3 domain of CD1 seems to be still more conserved than the well-conserved alpha 3 domain of class I MHC molecules. Furthermore, in the human CD1 gene family, interlocus exon exchange has homogenized alpha 3 domains of all CD1 genes except HCD1C. 相似文献