首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the "barrel-stave" model for voltage-gated alamethicin channels in planar lipid bilayers, proline residues, especially Pro14, are assumed to play a significant role. Taking advantage of a previous synthetic alamethicin analogue in which all eight alpha-aminoisobutyric acids were replaced by leucines, two new analogues were prepared in order to test the effects of Pro14 and Pro2 substitutions by alanines. The alpha-helical content of the three analogues in methanol solution remains predominant (between 63 and 80%). Macroscopic conductance experiments show that a high voltage dependence is conserved, although the apparent mean number of monomers forming the channels is significantly reduced when the substitution occurs at position 14. This is confirmed in single-channel experiments which further reveal faster fluctuations for the modified analogues. These results demonstrate that, although prolines, especially Pro14, are favorable residues for alamethicin-like events, they are not absolute prerequisites for the development of highly voltage-dependent multistate conductances.  相似文献   

2.
Synthetic alamethicin analogs, in which all Aib residues had been replaced by Leu (L2) then proline 14 replaced by an alanine (L5), were studied in SDS micelles using circular dichroism and NMR spectroscopy. Nuclear Overhauser effects were used as constraints for molecular modelling. The structures determined for both peptides in SDS micelles were compared with those previously obtained in methanol in order to establish a secondary structure/ionophore activity relationship. Our results indicated that a shortening of peptide helices could be responsible for the observed decrease in ion channel lifetimes. However, the length of helices may not by itself explain the drastic destabilization of channels when Pro14 of alamethicin is replaced by Ala in L5. Indeed analysis of the helical wheel of L5 reveals heterogeneity in the amphipathicity depending on the medium. Thus, loss of amphipathicity seems to underly the observed destabilization of channels. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
In a previous study, a synthetic analogue of the peptaibol alamethicin, in the sequence of which all alpha-aminoisobutyric acid (Aib) were substituted by leucine residues and the C-terminal residue modified, was shown to display the same single-channel behaviour as alamethicin in planar lipid bilayer, except that the sublevel lifetimes were much reduced. New analogues differing in their C-terminal residue (Phe-NH2, Pheol, Trp-NH2) have now been tested for their single channel properties in neutral lipid bilayers. The conductance amplitudes and open channel lifetimes do not differ significantly from the previous analogue. Thus, the nature of the last residue, which may be located near the membrane interface, does not seem to play an important role in the destabilisation of the conducting aggregate observed after the Aib substitution by Leu. Since the deletion of one residue (Glu18) in the 14-20 moiety induces a slight decrease of the increment between the conductance levels, but has no effect upon the channel lifetimes, this residue and the length of this segment do not interfer much with the channel lifetime of peptaibols. In conclusion the factors influencing the aggregate stability may be sought in the helix-helix interactions.  相似文献   

4.
Longibrachins LGA I (Ac Aib Ala Aib Ala Aib(5) Ala Gln Aib Val Aib(10) Gly Leu Aib Pro Val(15) Aib Aib Gln Gln Pheol(20), with Aib: alpha-aminoisobutyric acid, pheol: phenylalaninol) and LGB II are two homologous 20-residue long-sequence peptaibols isolated from the fungus Trichoderma longibrachiatum that differ between them by a Gln-18/Glu substitution. They distinguish from alamethicin by a Pro-2 for Ala replacement, which allowed to examine for the first time with natural Aib-containing analogues, the effect of Pro-2 on the ion-channel properties exhibited by alamethicin. The influence of these structural modifications on the voltage-gated ion-channel forming activity of the peptides in planar lipid bilayers were analysed. The general 'barrel-stave' model of ion-channel activity, already described for alamethicin, was preserved with both longibrachins. The negatively charged LGB II promoted higher oligomerisation levels, which could presumably dilute the repulsive effect of the negative Glu ring near the entrance of the channel and resulted in lower lifetimes of the substates, confirming the strong anchor of the peptide C-terminus at the cis-interface. Reduction of the channel lifetimes was observed for the longibrachins, compared to alamethicin. This argues for a better stabilisation of the channels formed by peptaibols having a proline at position 2, which results in better anchoring of the peptide monomer N-terminus at the trans-bilayer interface. Qualitative assays of the temperature dependence on the neutral longibrachin channel properties demonstrated a high increase of channel lifetimes and a markedly reduced voltage-sensitivity when the temperature was decreased, showing that such conditions may allow to study the channel-forming properties of peptides leading to fast current fluctuations.  相似文献   

5.
Analogues of alamethicin, a 20-mer amphipathic helical peptide with ionophore activity, in the sequence of which all Aib residues were substituted by Ala (A1) or Leu (L1), were synthesized by the solid phase method, purified by high performance liquid chromatography and characterized by fast atomic bombardment mass spectrometry. Infrared and CD studies showed that A1 easily underwent a transconformation to beta-structure whereas L1 displayed a predominant alpha-helical character, thus being a potential ionophore model. Its voltage-dependent multistate activity in model membranes showed that Aib is not a requisite residue to observe an alamethicin-like behavior. However, as the lifetime of the single channels was much shorter than for alamethicin, the peptide chain was lengthened by a Leu (LL1) or a Ser (SL1) residue. The last peptide gave an increased channel lifetime, but the design of other non-Aib peptides, taking into account the hydroxyl C-terminus and side-chain interactions between helices in a barrel-stave bundle, is desirable to approach more closely the alamethicin activity.  相似文献   

6.
The peptide alamethicin self-assembles to form helix bundle ion channels in membranes. Previous macroscopic measurements have shown that these channels are mildly cation-selective. Models indicate that a source of cation selectivity is a zone of partial negative charge toward the C-terminal end of the peptide. We synthesized an alamethicin derivative with a lysine in this zone (replacing the glutamine at position 18 in the sequence). Microscopic (single-channel) measurements demonstrate that dimeric alamethicin-lysine18 (alm-K18) forms mildly anion-selective channels under conditions where channels formed by the parent peptide are cation-selective. Long-range electrostatic interactions can explain the inversion of ion selectivity and the conductance properties of alamethicin channels.  相似文献   

7.
1. The functional properties of biological membranes depend on their molecular composition. In regard to this, charged glycosphingolipids play an outstanding role in the functional adaptation of membranes to different temperatures.2. In order to shed some light on the respective functional properties of complex membraneous glycosphingolipids, the effects of altered temperatures (5–40°C) on planar lipid bilayers made from diphytanoylphosphatidylcholine (DPPC) and alamethicin as an ion channel was analyzed in the presence of either a sialoglycosphingolipid (less polar disialoganglioside GD1a or highly polar tetrasialoganglioside GQ1b) or phosphatidylserine (PS; as control).3. Different to the control bilayers made from DPPC or DPPC + PS, the bilayers containing gangliosides had specific maxima in alamethicin conductance and stabile life times. Changes in pore-state conductances indicate structural effects based on an interaction of the large (negatively charged) ganglioside headgroups with the alamethicin pores.4. The results concerning open time and closed time of channels seem to be based on the gangliosides changing the viscosity of the bilayer and possibly introducing phase transitions.5. Thus, the findings suggest that gangliosides (1) directly affect channel molecules via their headgroups and (2) may additionally affect the fluidity of membranes in order to maintain membrane homeoviscosity in areas surrounding ion channels independent from the environmental temperature.6. The effects of gangliosides may be of special interest in describing the ability of neuronal adaptation of vertebrates to temperature and more general regarding the functional adaptation of neurons.  相似文献   

8.
Alamethicin is a helical 20-amino acid voltage-gated channel-forming peptide, which is known to exhibit segmental flexibility in solution along its backbone near alpha-methylalanine (MeA)-10 and Gly-11. In an alpha-helical configuration, MeA at position 10 would normally hydrogen-bond with position 14, but the presence of proline at this position prevents the formation of this interhelical hydrogen bond. To determine whether the presence of proline at position 14 contributes to the flexibility of this helix, two analogs of alamethicin were synthesized, one with proline 14 replaced by alanine and another with both proline 14 and glycine 11 replaced by alanine. The C-termini of these peptides were derivatized with a proxyl nitroxide, and paramagnetic enhancements produced by the nitroxide on the Calpha protons were used to estimate r-6 weighted distances between the nitroxide and the backbone protons. When compared to native alamethicin, the analog lacking proline 14 exhibited similar C-terminal to Calpha proton distances, indicating that substitution of proline alone does not alter the flexibility of this helix; however, the subsequent removal of glycine 11 resulted in a significant increase in the averaged distances between the C- and N-termini. Thus, the G-X-X-P motif found in alamethicin appears to be largely responsible for mediating high-amplitude bending motions that have been observed in the central helical domain of alamethicin in methanol. To determine whether these substitutions alter the channel behavior of alamethicin, the macroscopic and single-channel currents produced by these analogs were compared. Although the substitution of the G-X-X-P motif produces channels with altered characteristics, this motif is not essential to achieve voltage-dependent gating or alamethicin-like behavior.  相似文献   

9.
Alamethicin is a 19-amino-acid residue hydrophobic peptide that produces voltage-dependent ion channels in membranes. Analogues of the Glu(OMe)(7,18,19) variant of alamethicin F50/5 that are rigidly spin-labeled in the peptide backbone have been synthesized by replacing residue 1, 8, or 16 with 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxyl (TOAC), a helicogenic nitroxyl amino acid. Conventional electron paramagnetic resonance spectra are used to determine the insertion and orientation of the TOAC(n) alamethicins in fluid lipid bilayer membranes of dimyristoyl phosphatidylcholine. Isotropic (14)N-hyperfine couplings indicate that TOAC(8) and TOAC(16) are situated in the hydrophobic core of the membrane, whereas the TOAC(1) label resides closer to the membrane surface. Anisotropic hyperfine splittings show that alamethicin is highly ordered in the fluid membranes. Experiments with aligned membranes demonstrate that the principal diffusion axis lies close to the membrane normal, corresponding to a transmembrane orientation. Combination of data from the three spin-labeled positions yields both the dynamic order parameter of the peptide backbone and the intramolecular orientations of the TOAC groups. The latter are compared with x-ray diffraction results from alamethicin crystals. Saturation transfer electron paramagnetic resonance, which is sensitive to microsecond rotational motion, reveals that overall rotation of alamethicin is fast in fluid membranes, with effective correlation times <30 ns. Thus, alamethicin does not form large stable aggregates in fluid membranes, and ionic conductance must arise from transient or voltage-induced associations.  相似文献   

10.
Energy optimizations are carried out on the N-terminal fragment of trichorzianine in comparison to that of alamethicin. The results indicate that the helical character of the (Ac...Pro13) sequence of trichorzianine (TA IIIc) is essentially alpha with a bend in the helix axis in the end proline region, a structure comparable to the optimal alpha-helical structure of the corresponding segment (Ac...Pro14) of alamethicin AI. However, two weak n----n + 3 interactions coexist in trichorzianine with the alpha-helical n----n + 4 hydrogen bonds. The possible role of the glutamine side-chains in pairing such segments together is considered.  相似文献   

11.
Alamethicin causes a concentration-dependent increase of [Ca2+]i in suspensions of bovine adrenal chromaffin cells loaded with fura-2. The basal levels of Cai2+ (234 +/- 37 nM; n = 4) increased to a maximum of 2347 +/- 791 nM (n = 3) with 100 micrograms/ml alamethicin. In the presence of 1 mM Cae2+ the increase reached a plateau within about 2-5 s. This increase was due to Ca2+ entry into chromaffin cells, since in the absence of Cae2+ alamethicin did not modify [Ca2+]i. This contrasts with ionomycin (1 microM) which produced a Cai2+ transient even in the absence of Cae2+. Mn2+ ions also entered chromaffin cells in the presence of alamethicin, as measured by the quenching of fura-2 fluorescence following excitation at 360 nm. Resting chromaffin cells had a measurable permeability to Mn2+ which was drastically increased by cell depolarization by K+ (50 mM) addition. This suggests that Mn2+ is able to permeate voltage-dependent Ca2+ channels. Ni2+ uptake into either resting or K(+)-stimulated chromaffin cells was undetectable, but addition of alamethicin induced rapid uptake of this cation. The alamethicin-induced entry of Ni2+ was decreased by 50 mM K+. Overall, the results are compatible with the formation by alamethicin of ion channels in chromaffin cell plasma membranes.  相似文献   

12.
We present simulation results for the effective diffusion coefficients of a sodium ion in a series of model ion channels of different diameters and hydrophobicities, including models of alamethicin, a leucine-serine peptide, and the M2 helix bundle of the nicotinic acetylcholine receptor. The diffusion coefficient, which in the simulations has a value of 0.15(2) A2ps-1 in bulk water, is found to be reduced to as little as 0.02(1) A2ps-1 in the narrower channels, and to about 0.10(5) A2ps-1 in wider channels such as the nicotinic acetylcholine receptor. It is anticipated that this work will be useful in connection with calculations of channel conductivity using such techniques as the Poisson-Nernst-Planck equation, Eyring rate theory, or Brownian dynamics.  相似文献   

13.
Alamethicin, a linear 20-amino acid antibiotic, forms voltage-dependent channels in lipid bilayer membranes. We show here that alamethicin-phospholipid conjugates can be prepared by photolysis of unilamellar vesicles containing alamethicin and a phosphatidylcholine analogue with a carbene precursor at the end of the C-2 fatty acyl chain. This result indicates that at least a portion of the alamethicin molecule is in contact with the hydrocarbon moiety of the membrane in the absence of an applied voltage. Furthermore, the alamethicin-phospholipid photoproduct is able to induce a voltage-gated conductance similar to that of natural alamethicin. The importance of these results in terms of mechanisms for channel gating is discussed.  相似文献   

14.
The effects of the peptide polycations salmon protamine (M r = 4332,z = + 21) and poly-l-lysine (M r 100,00,z + 775) on ion channels formed by synthetic alamethicin Alm-F30 (one negative charge), natural Alm-F50 (neutral) and phosphorylated Alm-F50 (two negative charges) reconstituted in planar lipid bilayers have been studied at the single channel level. It was observed that both polycations in micromolar concentrations transiently block ion permeation through the channels formed by each alamethicin analogue, although in case of the neutral Alm-F50 to a significantly lesser extent. Poly-l-lysine showed to be more effective than protamine in blocking these channels. If either polycation is present in the cis-compartment, blockade occurs only at cis positive membrane voltages. At constant polycation concentration, dwell times in the blocked state increase when salt concentration is lowered, and decrease at acidic pH with an apparent pK of 4.8. Mean lifetime of blockade events shortens when membrane voltage is increased, which suggests that both polycations may permeate through the oligomeric alamethicin channels if conductance levels are > 2. We suggest that blockade is caused by electrostatic binding of a single polycation molecule to the C-terminal channel mouth; in case of Alm-F30, Glu18 has to be considered as the putative binding site. Our results provide further evidence for the barrel-stave model and a parallel orientation of dipole monomers in the channel aggregate, the C-termini facing the membrane side with the more positive membrane potential.  相似文献   

15.
Alamethicin is a 19-residue hydrophobic peptide, which is extended by a C-terminal phenylalaninol but lacks residues that might anchor the ends of the peptide at the lipid-water interface. Voltage-dependent ion channels formed by alamethicin depend strongly in their characteristics on chain length of the host lipid membranes. EPR spectroscopy is used to investigate the dependence on lipid chain length of the incorporation of spin-labeled alamethicin in phosphatidylcholine bilayer membranes. The spin-label amino acid TOAC is substituted at residue positions n = 1, 8, or 16 in the sequence of alamethicin F50/5 [TOAC(n), Glu(OMe)(7,18,19)]. Polarity-dependent isotropic hyperfine couplings of the three TOAC derivatives indicate that alamethicin assumes approximately the same location, relative to the membrane midplane, in fluid diC(N)PtdCho bilayers with chain lengths ranging from N = 10-18. Residue TOAC(8) is situated closest to the bilayer midplane, whereas TOAC(16) is located farther from the midplane in the hydrophobic core of the opposing lipid leaflet, and TOAC(1) remains in the lipid polar headgroup region. Orientational order parameters indicate that the tilt of alamethicin relative to the membrane normal is relatively small, even at high temperatures in the fluid phase, and increases rather slowly with decreasing chain length (from 13 degrees to 23 degrees for N = 18 and 10, respectively, at 75 degrees C). This is insufficient for alamethicin to achieve hydrophobic matching. Alamethicin differs in its mode of incorporation from other helical peptides for which transmembrane orientation has been determined as a function of lipid chain length.  相似文献   

16.
R Vince  J Brownell  K L Fong 《Biochemistry》1978,17(25):5489-5493
A photoaffinity labeling puromycin analogue, Nepsilon-(2-nitro-4-azidophenyl)-L-lysinyl puromycin aminonucleoside (NAP-Lys-Pan), was synthesized and used for investigation of the peptidyl transferase center of 70S riobsomes. Visible light irradiation of NAP-Lys-Pan led to covalent linkage of the analogue with Escherichia coli ribosomes. In a subsequent step, poly(uridylic acid) was employed to direct Ac[14C]Phe-tRNA to the P sites of the photolabeled ribosomes. Transpeptidation of Ac[14C]phenylalanine to the bound NAP-Lys-Pan resulted in selective incorporation of radioactive label into the peptidyl transferase A site. Dissociation of the ribosomes into subunits, and digestion of the RNA components, indicated that the radioactive label was incorporated into a protein fraction of the 50S subunit.  相似文献   

17.
The N-terminal 1-34 segment of parathyroid hormone (PTH) is fully active in vitro and in vivo and it can reproduce all biological responses in bone characteristic of the native intact PTH. Recent studies have demonstrated that N-terminal fragments presenting the principal activating domain such as PTH(1-11) and PTH(1-14) with helicity-enhancing substitutions yield potent analogues with PTH(1-34)-like activity. To further investigate the role of alpha-helicity on biological potency, we designed and synthesized by solid-phase methodology the following hPTH(1-11) analogues substituted at positions 1 and/or 3 by the sterically hindered and helix-promoting C(alpha)-tetrasubstituted alpha-amino acids alpha-amino isobutyric acid (Aib), 1-aminocyclopentane-1-carboxylic acid (Ac(5)c) and 1-aminocyclohexane-1-carboxylic acid (Ac(6)c): Ac(5)c-V-Aib-E-I-Q-L-M-H-Q-R-NH(2) (I); Aib-V-Ac(5)c-E-I-Q-L-M-H-Q-R-NH(2) (II); Ac(6)c-V-Aib-E-I-Q-L-M-H-Q-R-NH(2) (III); Aib-V-Ac(6)c-E-I-Q-L-M-H-Q-R-NH(2) (IV); Aib-V-Aib-E-I-Q-L-M-H-Q-R-NH(2) (V); S-V-Aib-E-I-Q-L-M-H-Q-R-NH(2) (VI), S-V-Ac(5)c-E-I-Q-L-M-H-Q-R-NH(2) (VII); Ac(5)c-V-S-E-I-Q-L-M-H-Q-R-NH(2) (VIII); Ac(6)c-V-S-E-I-Q-L-M-H-Q-R-NH(2) (IX); Ac(5)c-V-Ac(5)c-E-I-Q-L-M-H-Q-R-NH(2) (X); Ac(6)c-V-Ac(6)c-E-I-Q-L-M-H-Q-R-NH(2) (XI). All analogues were biologically evaluated and conformationally characterized in 2,2,2-trifluoroethanol (TFE) solution by circular dichroism (CD). Analogues I-V, which cover the full range of biological activity observed in the present study, were further conformationally characterized in detail by nuclear magnetic resonance (NMR) and computer simulations studies. The results of ligand-stimulated cAMP accumulation experiments indicated that analogues I and II are active, analogues III, VI and VII are very weakly active and analogues IV, V, VIII-XI are inactive. The most potent analogue, I exhibits biological activity 3500-fold higher than that of the native PTH(1-11) and only 15-fold weaker than that of the native sequence hPTH(1-34). Remarkably, the two most potent analogues, I and II, and the very weakly active analogues, VI and VII, exhibit similar helix contents. These results indicate that the presence of a stable N-terminal helical sequence is an important but not sufficient condition for biological activity.  相似文献   

18.
N- and C-terminally modified with fullerene or lipopeptide alamethicin molecules were designed for the formation of template-free, self-assembling, voltage-dependent ion conducting channels. The automated solid phase synthesis of the alamethicin-F30 sequence was performed by in situ fluoride activation on 2-chlorotritylchloride-polystyrene resin and the conjugation with fullerenes-C60 and -C70 was carried out in solution. Voltage-dependent bilayer experiments revealed preferred channel sizes for C-terminal alamethicin F30-fullerene-C60 and -C70 conjugates and higher activity compared with native alamethicin, whereas N-terminally linked fullerene balls destabilize pore formation. C-terminal alamethicin F30-fullerene-C70 conjugates show pore states with remarkably long lifetimes of seconds. C-terminal lipopeptide conjugates of alamethicin were prepared by coupling via short peptide spacers with synthetic tripalmitoyl-S-glyceryl-cysteine. which represents the strong membrane anchoring N-terminus of bacterial lipoprotein. Alamethicin-lipopeptide conjugates exhibit high channel forming activities, whereby they self-assemble and adopt preferred pore states with extremely long lifetimes. The novel membrane modifying peptaibol constructs are valuable lead compounds for developments in sensorics related to transmembrane ion conductance.  相似文献   

19.
Molecular dynamics simulations of ion channel peptides alamethicin and melittin, solvated in methanol at 27 degrees C, were run with either regular alpha-helical starting structures (alamethicin, 1 ns; melittin 500 ps either with or without chloride counterions), or with the x-ray crystal coordinates of alamethicin as a starting structure (1 ns). The hydrogen bond patterns and stabilities were characterized by analysis of the dynamics trajectories with specified hydrogen bond angle and distance criteria, and were compared with hydrogen bond patterns and stabilities previously determined from high-resolution NMR structural analysis and amide hydrogen exchange measurements in methanol. The two alamethicin simulations rapidly converged to a persistent hydrogen bond pattern with a high level of 3(10) hydrogen bonding involving the amide NH's of residues 3, 4, 9, 15, and 18. The 3(10) hydrogen bonds stabilizing amide NH's of residues C-terminal to P2 and P14 were previously proposed to explain their high amide exchange stabilities. The absence, or low levels of 3(10) hydrogen bonds at the N-terminus or for A15 NH, respectively, in the melittin simulations, is also consistent with interpretations from amide exchange analysis. Perturbation of helical hydrogen bonding in the residues before P14 (Aib10-P14, alamethicin; T11-P14, melittin) was characterized in both peptides by variable hydrogen bond patterns that included pi and gamma hydrogen bonds. The general agreement in hydrogen bond patterns determined in the simulations and from spectroscopic analysis indicates that with suitable conditions (including solvent composition and counterions where required), local hydrogen-bonded secondary structure in helical peptides may be predicted from dynamics simulations from alpha-helical starting structures. Each peptide, particularly alamethicin, underwent some large amplitude structural fluctuations in which several hydrogen bonds were cooperatively broken. The recovery of the persistent hydrogen bonding patterns after these fluctuations demonstrates the stability of intramolecular hydrogen-bonded secondary structure in methanol (consistent with spectroscopic observations), and is promising for simulations on extended timescales to characterize the nature of the backbone fluctuations that underlie amide exchange from isolated helical polypeptides.  相似文献   

20.
We have used molecular dynamics simulations, corresponding to a total simulation time of 11 ns, to investigate the effective short-time local diffusion coefficient of potassium and chloride ions in a series of model ion channels. These models, which include channels formed by the fungal peptide alamethicin, by a synthetic leucine-serine peptide, and by the pore-lining M2 helix bundle of the nicotinic acetylcholine receptor, have a range of different secondary structures, diameters and hydrophobicities. We find that the diffusion coefficients of both ions are appreciably reduced in the narrower channels, the extent of the reduction being similar for both the anionic and cationic species. This suggests that a difference in mobility cannot be the source of the ion selectivity exhibited by some of the channels (for example, the leucine-serine peptide). We find no evidence for a reduction in mobility of either ion in the nAChR model. These results are broadly in line with a previous similar study of Na+ ions, and may be useful in Poisson-Nernst-Planck, Eyring rate theory or Brownian dynamics calculations of channel conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号