首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many higher plants have shoot apical meristems that possess discrete cell layers, only one of which normally gives rise to gametes following the transition from vegetative meristem to floral meristem. Consequently, when mutations occur in the meristems of sexually reproducing plants, they may or may not have an evolutionary impact, depending on the apical layer in which they reside. In order to determine whether developmentally sequestered mutations could be released by herbivory (i.e., meristem destruction), a characterized genetic mosaic was subjected to simulated herbivory. Many plants develop two shoot meristems in the leaf axils of some nodes, here referred to as the primary and secondary axillary meristems. Destruction of the terminal and primary axillary meristems led to the outgrowth of secondary axillary meristems. Seed derived from secondary axillary meristems was not always descended from the second apical cell layer of the terminal shoot meristem as is expected for terminal and primary shoot meristems. Vegetative and reproductive analysis indicated that secondary meristems did not maintain the same order of cell layers present in the terminal shoot meristem. In secondary meristems reproductively sequestered cell layers possessing mutant cells can be repositioned into gamete-forming cell layers, thereby adding mutant genes into the gene pool. Herbivores feeding on shoot tips may influence plant evolution by causing the outgrowth of secondary axillary meristems.  相似文献   

2.
3.
The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development.  相似文献   

4.
Kalinina A  Mihajlović N  Grbić V 《Planta》2002,215(5):699-707
Axillary meristems form in the leaf axils during post-embryonic development. In order to initiate the genetic dissection of axillary meristem development, we have characterized the late-flowering branchless ecotype of Arabidopsis thaliana (L.) Heynh., Zu-0. The first-formed rosette leaves of Zu-0 plants all initiate axillary meristems, but later-formed leaves of the rosette remain branchless. Alteration in the meristem development is axillary meristem-specific because the shoot apical and floral meristems develop normally. Scanning electron microscopy, histology and RNA in situ analysis with SHOOTMERISTEMLESS ( STM), a marker for meristematic tissues, show that a mound of cells form and STM mRNA accumulates in barren leaf axils, indicating that axillary meristems initiate but arrest in their development prior to organizing a meristem proper. Expression and retention of the STM RNA in barren leaf axils further suggests that STM expression is not sufficient for the establishment of the axillary meristem proper.  相似文献   

5.
We examined the developmental morphology of the tropical Asian one-leaf plant Monophyllaea glabra, which is believed to have diverged first in the phylogenetic tree of the genus. The embryo within the seed consists of two cotyledons and a hypocotyl with no shoot or root apical meristems. The endogenous root meristem is formed nearer the hypocotyl end than in other examined Monophyllaea species. One of the cotyledons grows to form the macrocotyledon by means of the basal meristem. The groove meristem arises between the anisocotyledons, shifts toward the macrocotyledon, and is transformed to the inflorescence apex, which produces inflorescence axes in the axils of all ventral bracts of two rows, and secondary inflorescences in the axils of the lower dorsal bracts of the other two rows. The macrocotyledon may act as a ventral bract for the first inflorescence axis at the reproductive stage. This organization suggests that a common ancestor of Monophyllaea and Whytockia with decussate inflorescences diverged in one direction to become Monophyllaea and in another to become Whytockia.  相似文献   

6.
Developmental anomalies in the plumule meristem of peanut (Arachis hypogaea L.) somatic embryos resulted in poor shoot differentiation and reduced plant recovery. Existing meristems with caulogenic potential have never been tested for embryogenesis in peanut. The present experiment was designed to test the mature zygotic embryo axis derived plumule with three meristems for somatic embryogenesis. Embryogenic masses and embryos developed from the caulogenic meristems in the axils. Exposure of 2 weeks in primary medium with 90.5 μM 2,4-D suppressed the shoot tip differentiation temporarily which then regained the ability to form the shoot on withdrawal of 2,4-D. Exposure of 4 weeks in primary medium with 90.5 μM 2,4-D suppressed the shoot tip differentiation irreversibly. No shoot formation was noted from the tips in any of the cultures which were in secondary medium with 13.6 μM 2,4-D. Development of somatic embryos directly from axillary meristems was confirmed histologically. Conversion frequency of these embryos was 11%. Thus, in this report, we describe a method to obtain somatic embryos from the determined organogenic buds of the axillary meristem, by culturing the nodal explant vertically on embryo induction medium. It also displays the possibility of obtaining both embryogenic and organogenic potential in two parts of the same explant simultaneously. The possibility of extending this approach for genetic transformation in in vivo system through direct DNA delivery or Agrobacterium injection in meristems can also be explored. Using Agrobacterium rhizogenes, we have demonstrated the possibility of gene transfer in the axillary meristems of seed-derived plumule explant.  相似文献   

7.
Axillary meristem development in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Axillary shoot apical meristems initiate post-embryonically in the axils of leaves. Their developmental fate is a main determinant of the final plant body plan. In Arabidopsis, usually a single axillary meristem initiates in the leaf axil even though there is developmental potential for formation of multiple branches. While the wild-type plants rarely form multiple branches in the leaf axil, tfl1-2 plants regularly develop two or more branches in the axils of the rosette leaves. Axillary meristem formation in Arabidopsis occurs in two waves: an acropetal wave forms during plant vegetative development, and a basipetal wave forms during plant reproductive development. We report here the morphological and anatomical changes, and the STM expression pattern associated with the formation of axillary and accessory meristems during Arabidopsis vegetative development.  相似文献   

8.
Ulex europaeus is a much-branched shrub with small, narrow, spine-tipped leaves and axillary thorn shoots. The origin and development of axillary shoots was studied as a basis for understanding the changes that occur in the axillary shoot apex as it differentiates into a thorn. Axillary bud primordia are derived from detached portions of the apical meristem of the primary shoot. Bud primordia in the axils of juvenile leaves on seedlings develop as leafy shoots while those in the axils of adult leaves become thorns. A variable degree of vegetative development prior to thorn differentiation is exhibited among these secondary thorn shoots even on the same axis. Commonly the meristems of secondary axillary shoots initiate 3–9 bracteal leaves with tertiary axillary buds before differentiating as thorns. In other cases the meristems develop a greater number of leaves and tertiary buds as thorn differentiation is delayed. The initial stages in the differentiation of secondary shoot meristems as thorns are detected between plastochrons 10–20, depending on vigor of the parent shoot. A study of successive lateral buds on a shoot shows an abrupt conversion from vegetative development to thorn differentiation. The conversion involves the termination of meristematic activity of the apex and cessation of leaf initiation. Within the apex a vertical elongation of cells of the rib meristem initials and their immediate derivatives commences the attenuation of the apex which results in the pointed thorn. All cells of the apex elongate parallel to the axis and proceed to sclerify basipetally. Back of the apex some cortical cells in which cell division has persisted longer differentiate as chlorenchyma. Although no new leaves are initiated during the extension of the apex, provascular strands are present in the thorn tip. Fibrovascular bundles and bundles of cortical fibers not associated with vascular tissue differentiate in the thorn tip and are correlated in position with successive incipient leaves in the expected phyllotactic sequence, the more developed bundles being related to the first incipient leaves. Some secondary shoots displayed variable atypical patterns of meristem differentiation such as abrupt conversion of the apex resulting in sclerification with limited cell elongation and small, inhibited leaves. These observations raise questions concerning the nature of thorn induction and the commitment of meristems to thorns.  相似文献   

9.
Procedures were developed for the in vitro elimination of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), Sugarcane streak mosaic virus (SCSMV), Sugarcane yellow leaf virus (SCYLV) and Fiji disease virus (FDV) from infected sugarcane. In vitro shoot regeneration, elongation and virus elimination through meristem tissue culture originating from both apical and axillary shoots were compared. The average rates of regeneration and elongation from apical meristem tissues were 91 and 66%, respectively, with the virus-free rate among elongated shoots ranging from 61–92%. Mature axillary buds were cultivated in vitro to produce axillary shoots, from which meristem tissues were excised and cultured. These meristem tissues regenerated (77–100%) and elongated (55–88%) in culture medium at approximately the same rate as the apical meristems. The average virus elimination rate was 90% among elongated shoots derived from mature axillary buds. All five viruses can be eliminated by meristem tissue culture from both apical and axillary shoots using a standardized procedure. The overall average efficiency of virus-free plant production was 45 and 58% from apical and axillary shoots, respectively. There were no significant differences for shoot induction or virus elimination when the meristems were harvested from either the apical or the axillary shoots. This is the first report of SrMV or SCSMV elimination from sugarcane, as well as elimination of any mixed virus infections. This new method of harvesting meristems from axillary buds greatly expands the amount of material available for therapeutic treatments and thereby increases the probability of eliminating viruses from infected sugarcane.  相似文献   

10.
Shoot apical meristems of seedling and mature eastern white pine trees were excised and grownin vitro. Placing the meristems on filters instead of directly on agarose-solidified nutrient medium enhanced survival of both juvenile and mature meristems. Applying forcing treatments to mature branches improved survival and growth of dissected meristems compared with meristems from non-forced branches in experiments conducted over two years. No consistent differences were observed among 2-, 4-, and 6-week forcing treatments. Including 5.37 nM (0.001 mg l-1) l-naphthaleneacetic acid in the culture medium did not affect meristem survival or growth. Some meristems from seedlings grew rapidly, produced primary leaves, underwent internode elongation, and in three cases, produced adventitious roots. Meristems from mature trees did not grow as rapidly as seedling meristems. The leaves produced by mature meristems appeared to be scale leaves and a few of these had brachyblast primordia in the axils. The shoots derived from mature meristems did not produce adventitious roots.  相似文献   

11.
Regeneration of new shoots in plant tissue culture is often associated with appearance of abnormally shaped leaves. We used the adventitious shoot regeneration response induced by decapitation (removal of all preformed shoot apical meristems, leaving a single cotyledon) of greenhouse-grown cotyledon-stage seedlings to test the hypothesis that such abnormal leaf formation is a normal regeneration progression following wounding and is not conditioned by tissue culture. To understand why shoot regeneration starts with defective organogenesis, the regeneration response was characterized by morphology and scanning electron and light microscopy in decapitated cotyledon-stage Cucurbita pepo seedlings. Several leaf primordia were observed to regenerate prior to differentiation of a de novo shoot apical meristem from dividing cells on the wound surface. Early regenerating primordia have a greatly distorted structure with dramatically altered dorsoventrality. Aberrant leaf morphogenesis in C. pepo gradually disappears as leaves eventually originate from a de novo adventitious shoot apical meristem, recovering normal phyllotaxis. Similarly, following comparable decapitation of seedlings from a number of families (Chenopodiaceae, Compositae, Convolvulaceae, Cucurbitaceae, Cruciferae, Fabaceae, Malvaceae, Papaveraceae, and Solanaceae) of several dicotyledonous clades (Ranunculales, Caryophyllales, Asterids, and Rosids), stems are regenerated bearing abnormal leaves; the normal leaf shape is gradually recovered. Some of the transient leaf developmental defects observed are similar to responses to mutations in leaf shape or shoot apical meristem function. Many species temporarily express this leaf development pathway, which is manifest in exceptional circumstances such as during recovery from excision of all preformed shoot meristems of a seedling.  相似文献   

12.
In Echinocereus reichenbachii dichotomous branching and fasciation (cresting) are rare events. Both were found together in only a few of many populations investigated and are interpreted as variants of a single phenomenon. They may occur at any stage of shoot development, but crest meristems arise most commonly on young branches among clusters of normal shoots. Sometimes they appear on unbranched young plants or seedlings, very rarely on older shoots. Dichotomy results from the division of an apical meristem into equal parts each of which functions independently, producing a forked shoot. Fasciation involves the extension of a single meristem into an apical ridge. The product is a flabellate shoot that becomes undulate if growth along the summit continues. In longisection linear meristems appear similar to radial sections of normal shoots; in median sagittal section they have a much extended central mother cell zone within which the cell pattern resembles a rib meristem. Although crest meristems become sluggish or even inactive with age, localized renewed growth may occur spontaneously or be induced by injury. In this species the random production of normal shoots from crest meristems (defasciation) was not observed, but if much or all of such a meristem is removed, branches may arise from lateral areoles, and these are always normal. It seems, therefore, that whatever induces fasciation in E. reichenbachii originates in and is restricted to the apical meristem and its immediate vicinity.  相似文献   

13.
14.
After a critical evaluation of the concept of dichotomous branching in Cormophytes the shoot apical meristems ofPsilotum triquetrum andSelaginella speciosa are described. InPsilotum only the terminal meristems of the cryptophilic shoots have a three sided apical cell. Those of the photophilic shoots lack a typical apical cell.Selaginella has a two sided apical cell. The process of branching is independent from apical cells. It is due to an equal or unequal fractionation of the initial zone of the shoot apex which embraces all tissues above the leaf producing zone of the apical meristem.
Herrn Univ.-Prof. Dr.Walter Leinfellner zum 70. Geburtstag gewidmet.  相似文献   

15.
A unique feature of flowering plants is their ability to produce organs continuously, for hundreds of years in some species, from actively growing tips called apical meristems. All plants possess at least one form of apical meristem, whose cells are functionally analogous to animal stem cells because they can generate specialized organs and tissues. The shoot apical meristem of angiosperm plants acts as a continuous source of pluripotent stem cells, whose descendents become incorporated into organ primordia and acquire different fates. Recent studies are unveiling some of the molecular pathways that specify stem cell fate in the center of the shoot apical meristem, that confer organ founder cell fate on the periphery, and that connect meristem patterning elements with events at the cellular level. The results are providing important insights into the mechanisms through which shoot apical meristems integrate cell fate decisions with cellular proliferation and global regulation of growth and development.  相似文献   

16.
17.
The developmental morphology of seedlings and shoots of Dalzellia zeylanica was examined with reference to the meristem in order to understand the dorsiventral, foliose shoot. In seedlings, no obvious primary shoot and no root are formed. Subsequent to disappearance of the vestigial primary shoot meristem, two shoot meristems are established in the axils of the cotyledons, one of which grows into a secondary shoot. Microtome and SEM examinations of mature plants show that the shoot meristem is complex, comprising three zones along the shoot margin. The organogenetic zone, equivalent to the shoot apical meristem, produces dorsal leaves proximally and much fewer marginal leaves distally. During development, the zone repeatedly changes into a dorsal zone, while a new organogenetic zone is formed in an area between developing marginal leaves, resulting in the alternation of the organogenetic and dorsal zones, which allowed development of the coenosomic structure of the shoot. The dorsal and ventral zones do not produce leaves, but contribute to shoot expansion. The ventral zone also forces the marginal leaves to shift to the lateral side of the shoot. The rosette with tufted leaves might be a modification of the short shoot (ramulus) of other Tristichoideae.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 289–302.  相似文献   

18.
Angle meristems are mounds of meristematic tissue located atdorsal and/or ventral branch points of the dichotomising stemaxes of many species of Selaginella (Lycophyta). The presentstudy examined the development of ventral angle shoots of S.martensii in response to removal of distal shoot apices (decapitation).Scanning electron microscopy of sequential replicas of developingangle meristems and angle shoots revealed that for the firsttwo pseudowhorls of leaf primordia, particular leaves are notattributable to particular merophytes of the angle meristemapical cell. Individual leaf primordia of the first (outer)pseudowhorl often form from more than one merophyte. Neitherthe shape of the angle meristem apical cell nor the directionof segmentation has any effect on the development of the angleshoot. Additionally, the apical cell of the angle meristem doesnot necessarily contribute directly to either of the new shootapices of the developing angle shoot. The first bifurcationof the angle shoot shows a remarkably consistent relationshipto the branching pattern of the parent shoot. The strong branchof the first angle shoot bifurcation typically occurs towardthe weak side branch of the parent shoot. Anatomical studiesshowed that bifurcation of the young angle shoot involved theformation of two new growth centres some distance away fromthe original angle meristem apical cell; new apical cells subsequentlyformed within these. These results provide additional supportfor the view that cell lineage has little or no effect on finalform or structure in plants.Copyright 1994, 1999 Academic Press Selaginella martensii Spring, Lycophyta, angle meristem, apical cell, shoot apical meristem, leaf primordium, branching, dichotomy, morphogenesis, determination, competence, development, mould and cast technique, replica technique, scanning electron microscopy  相似文献   

19.
The duration of mitosis and the cell cycle were determined for defined cell populations of the shoot apical meristem of Ceratopteris thalictroides Brong. by using the colchicine-induced metaphase accumulation technique. The results indicate that the apical cell is mitotically active and cycles at an apparently greater frequency than the cells of subjacent populations. Duration of mitosis was similar for all cells of the meristem. These results are correlated with mitotic indices of control apices, the geometry of the apex, and the mean number of cells in the meristem. Shoot apices from adult plants were examined to determine mitotic indices within the meristem; mitotic activity was again noted for the apical cell. These results contradict recent proposals that the pteridophyte apical cell serves as a unicellular quiescent center which lacks histogenic potential and offer experimental support for the classical concept of apical cell function in those fern shoot meristems which terminate in a single apical cell.  相似文献   

20.
Although some species of Streptocarpus (Gesneriaceae) do not possess a layered shoot apical meristem (SAM), but three individual meristems, the basal meristem (BM), the petiolode meristem (PM) and the groove meristem (GM) on the petiolode from which additional phyllomorphs are formed. To gain insights into the processes involved, we examined the development of seedlings from germination to the formation of the primary phyllomorph in S. rexii, a rosulate species. Our specific focus was to examine the relationship between the functional activity of the GM and meristematic activity, which was assessed by a combined analysis of toluidine blue staining of histological sections and the incorporation of BrdU into meristematic tissues. The results were integrated into 3-D graphics, which suggests a complex spatial and temporal interaction within the GM. The significance of our observations is discussed and compared to the SAM observed in most other angiosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号