首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The disposition of the enantiomers of hydroxychloroquine (HCQ) and its major metabolites in ocular tissues of rabbits has been studied. Both albino, New Zealand White (NZW), and pigmented animals were administered daily oral doses of rac-HCQ, (S)-HCQ or (R)-HCQ (20 mg/kg) over 1, 6, or 8 day periods or for 8 days followed by a 7-day washout period. At the end of the study periods, plasma and whole blood samples were collected and the rabbits were sacrificed. The eyes were collected, the aqueous humor removed with a syringe, and the eyes separated into the cornea, lens, vitreous body, iris, choroid-retina, sclera, and conjunctiva. The concentrations of (R)-HCQ, (S)-HCQ, and their respective metabolites were determined using a validated enantioselective liquid chromatographic assay. The data from these studies indicate that HCQ accumulated in both pigmented and nonpigmented ocular tissues. In the pigmented tissues, HCQ and its metabolites were bound to melanin and the binding was not enantiospecific. In the nonpigmented tissues and in the iris and retina-choroid of the NZW rabbits, the accumulation appeared to be the result of a reversible and enantioselective binding of HCQ and its metabolites to an unidentified biopolymer present in these ocular tissues. © 1994 Wiley-liss, Inc.  相似文献   

2.
Hydroxychloroquine (HCQ) stereoselective distribution was investigated in rabbits after 20 mg/kg po of racemic-HCQ (rac-HCQ) and 20 mg/kg po of each enantiomer, 97% pure (?)-(R)-HCQ and 99% pure (+)-(S)-HCQ. Concentrations were 4 to 6 times higher in whole blood than in plasma. Melanin did not affect plasma and whole blood levels since concentrations did not differ between pigmented and nonpigmented animals. After single and multiple doses of the separate enantiomers, only 5–10% of the antipode could be measured, in blood or plasma. Therefore, there was no significant interconversion from one enantiomer into the other. Following rac-HCQ, plasma (+)-(S)-levels always surpassed (?)-(R)-ones while in whole blood, (?)-(R)-HCQ concentrations were always the highest. When the enantiomers were administered separately, blood concentrations achieved after (?)-(R)-HCQ were higher, especially after multiple doses. These observations suggest that (?)-(R)-HCQ is preferentially concentrated by cellular components of blood. This enantioselective distribution of HCQ could be secondary to a stereoselective protein binding to plasma proteins, although a more specific binding of (?)-(R)-HCQ to blood cells cannot be ruled out. Since in whole blood (?)-(R)-HCQ is retained in cellular components, metabolism would favour the more available (+)-(S)-enantiomer. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Cocaine hydrochloride, in doses of 0.5, 1.0, 2.0 and 4.0 mg/kg, iv, was administered to male Sprague-Dawley rats. Cerebrospinal fluid (CSF) was collected from the cisterna magna over a 20 min period and blood samples were obtained at 20 min after cocaine administration. In addition, blood samples for the 1 mg/kg dose of cocaine were collected at 2, 10, 20 and 30 min following drug injection. Gas chromatography/mass spectrometry was used for the analysis of cocaine and its metabolites in plasma and CSF. The disappearance of cocaine (1 mg/kg) from the plasma exhibited first order kinetics with a half-life of 18.11 +/- 3.22 min. Cocaine and benzoylecgonine were found in CSF and the concentrations of cocaine and benzoylecgonine increased in CSF as the doses of cocaine were increased. CSF flow rates were not altered by the iv administration of cocaine or benzoylecgonine. The CSF-to-plasma ratios for cocaine were quite similar to each other over the dosage range of cocaine that was administered; however, the CSF-to-plasma ratios for benzoylecgonine decreased as the concentrations of benzoylecgonine increased in plasma and CSF. When benzoylecgonine (2 mg/kg, iv) was given, the compound was detected in CSF indicating that benzoylecgonine can enter into the central nervous system from the peripheral blood. This investigation shows that cocaine and benzoylecgonine can be assayed in CSF and that the plasma levels of these compounds correlate with their concentrations in CSF.  相似文献   

4.
The purpose of this study was to evaluate species differences in tissue accumulation of chromium. Rats and mice were orally exposed to Cr(VI) (potassium chromate) via drinking water (8 mg/d/kg body wt for 4 or 8 wk) or by ip injection (0.3 and 0.8 mg/d/kg, for 4 or 14 d). Chromium concentrations were measured by atomic absorption spectrophotometry, and tissues were compared for exposure route and species differences. After oral exposure, irrespective of treatment duration, liver concentrations of chromium were three to four times higher in mice than rats, whereas kidney concentrations were about 50% lower. However, after ip injection, kidney and blood concentrations in rats were two- and four-fold, higher, respectively. Both rats and mice showed high values of Cr concentration in the bone. After single ip injection of Na2 51CrO4; Cr concentrations were higher in the blood of rats than mice both after 24 and 72 h. Red blood cell concentrations of Cr were also greater in rats than mice by approximately threefold, whereas white blood cell Cr concentrations were higher in mice than rats. There was also a twofold greater binding of Cr/μmol of hemoglobin in rats compared to mice. These data indicate that species differences exist for Cr metabolism and that they differ with respect to the route of exposure. These results may be owing to species differences in the reduction of Cr and different binding of Cr to hemoglobin.  相似文献   

5.
The female Sprague‐Dawley (SD) and Dark Agouti (DA) rats are considered the animal counterparts of the human extensive and poor metabolizer cytochrome P450 (CYP) 2D6 phenotypes, respectively. The aim of this work was to study possible rat strain differences in the steady‐state pharmacokinetics of the (+)‐(S)‐ and (−)‐(R)‐enantiomers of citalopram and its demethylated metabolites. A chronic drug treatment regimen (15 mg/kg daily) was implemented for 13 days in separate groups of SD (n = 9) and DA (n = 9) rats by using osmotic pumps. The concentrations of citalopram and two major metabolites in serum and two brain regions were analyzed by an enantioselective high‐performance liquid chromatography assay. Higher serum and brain levels of citalopram and demethylcitalopram, but lower levels of didemethylcitalopram, were observed in DA rats when compared with SD rats. The enantiomeric (S/R) concentrations ratios of citalopram were lower in the DA rats when compared with the SD rats (0.53 ± 0.05 vs. 0.80 ± 0.03, P < 0.001), indicating a possibly decreased capacity in the metabolism of the (−)‐(R)‐enantiomer in the DA rats. This study shows that CYP2D deficiency results in steady‐state pharmacokinetic differences of the enantiomers of citalopram and its metabolites. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Hamdy DA  Brocks DR 《Chirality》2009,21(7):704-712
The stereoselective pharmacokinetics of ketoconazole (KTZ) enantiomers were studied in rat after i.v. and oral administration of (+/-)-KTZ. Sprague-Dawley rats were administered racemic KTZ as 10 mg/kg i.v. or orally over the range 10-80 mg/kg as single doses. Serial blood samples were collected over a 24-h period via surgically placed jugular vein cannulae. Plasma was assayed for KTZ enantiomer concentrations using stereospecific HPLC. Enantiomeric plasma protein binding was determined using an erythrocyte partitioning method at racemic concentrations of 10 and 40 mg/L. Stereoselective metabolism was tested by incubating the racemate (0.5-250 microM) with rat liver microsomes. In all rats, (+)-KTZ plasma concentrations were higher (up to 2.5-fold) than (-)-KTZ. The clearance and volume of distribution of the (-) enantiomer were approximately twofold higher than antipode. Half-life did not differ between the enantiomers. After oral doses the t(max) was not stereoselective. For both enantiomers with higher doses the respective half-life were found to increase. The mean unbound fraction of the (-) enantiomer was found to be up to threefold higher than that of the (+) enantiomer. At higher concentrations nonlinearity in plasma protein binding was observed for both enantiomers. There was no evidence of stereoselective metabolism by liver microsomes. Stereoselectivity in KTZ pharmacokinetics is attributable to plasma protein binding, although other processes such as transport or intestinal metabolism may also contribute.  相似文献   

7.
To study the effect of hydroxychloroquine (HCQ) on glucose and insulin homeostasis, healthy rats were dosed with 160 mg x kg (-1) x day(-1) of HCQ orally, and streptozocin-induced diabetic rats received 80, 120, and 160 mg x kg(-1) x day(-1) of HCQ, while controls received normal saline. Ten days after treatment with HCQ, healthy animals were challenged intravenously with insulin or glucose, while diabetic rats were given only an i.v. injection of insulin. In healthy rats, the areas within and under the glucose concentration - time curve following insulin and glucose challenge were estimated. In diabetic animals, the areas under the curve for both the percent change in serum glucose from baseline (AUG) and the percent change in serum insulin from baseline (AUI) were used as pharmacodynamic end points. In healthy rats, HCQ did not influence fasting serum glucose concentrations or glycemic profiles following i.v. administration of glucose or insulin. In diabetic rats, AUG and AUI were increased dependent on blood HCQ concentrations. The normal homeostatic mechanisms responsible for insulin-glucose regulation may compensate for possible HCQ-induced reduction of insulin metabolism in healthy rats. The HCQ dose- or concentration-effect relationships for glucose and insulin were linear over the range of HCQ concentrations tested. It is concluded that HCQ significantly elevated insulin blood concentration resulting in reduced glucose levels in a concentration-dependent fashion in diabetic rats. HCQ may have therapeutic potential in the treatment of type I and type II diabetes.  相似文献   

8.
Abstract— The concentrations of several metabolites, including glucose, glycogen, hexose phosphates, adenine nucleotides phosphocreatine, amino acids and some tricarboxylate cycle intermediates, have been estimated in cerebral tissues of rats treated with anticonvulsant doses of trimethadione, ethosuximide and chlordiazepoxide.
Anticonvulsant administration, in each case, produced an increase in brain glucose, but only trimethadione and ethosuximide resulted in elevated brain/blood glucose ratios. It was concluded that the apparent rise in intracellular glucose with the latter drugs may, in part, be the result of a stimulation of glucose transport from blood into the brain. Anticonvulsant administration was also shown to result in a depression of some tricarboxylate cycle intermediates. The pattern of these metabolite changes was in effect similar to those reported independently in mice treated with anaesthetics and it was therefore concluded that these differences probably reflected a depression in metabolic rate.
Metabolic alterations in general do not indicate aetiology but rather effects of the drug activities. However, a role implicating increased intracellular glucose levels with membrane stabilization is discussed.  相似文献   

9.
The single-dose kinetics of the enantiomers of citalopram (CIT) and its metabolites, demethylcitalopram (DCIT) and didemethylcitalopram (DDCIT), were investigated after administration of 10, 20, or 100 mg/kg (s.c.) rac-CIT to rats. Samples from serum and two brain regions were collected 1, 3, 10, or 20 h postdose for HPLC analysis. In the 100 mg/kg rats, the enantiomeric (S/R) serum concentration ratios of CIT decreased during the study period (0.93 at 1 h vs. 0.59 at 20 h; P < 0.001). In the 10 and 20 mg/kg rats, the decrease in serum S/R CIT ratios was not so evident as in the 100 mg/kg rats. In all three groups the S/R CIT ratio was almost the same in the brain as in serum, although both CIT enantiomer levels in the brain were found to be 5-10 times higher than the levels in serum. The serum and brain metabolite levels were low in the 10 and 20 mg/kg rats, whereas the levels increased during the study period in the 100 mg/kg rats. In conclusion, the CIT enantiomers were shown for the first time to be stereoselectively metabolized after single-dose administration to rats, as previously shown in steady-state dosing studies in humans and rats.  相似文献   

10.
BACKGROUND: The antimalarial drug artesunate affects erythroid cells leading to developmental toxicity and adult reticulocytopenia. We report on a kinetic study in rats and the tissue distribution of radioactivity following oral administration of [3H]‐artesunate to pregnant rats using quantitative whole‐body autoradiography (QWBA). METHODS: Rats were dosed orally with chlorproguanil/dapsone/artesunate (including 11.8 mg/kg artesunate) and plasma concentrations of artesunate and the active metabolite dihydroartemisinin (DHA) were determined. In the QWBA study, 6 rats received 13 mg/kg [3H]‐artesunate on day 18 of gestation. Groups of 2 rats were euthanized at 1, 6, and 24 hours after dosing, rapidly frozen, and sectioned in a cryostat. Sagittal sections were freeze‐dried and placed in contact with imaging plates. Tissue concentrations of radioactivity were quantified. RESULTS: Systemic exposure to DHA was up to 22‐fold higher than the parent compound and was higher in non‐pregnant females than males. In the QWBA study, high concentrations of radioactivity were seen in maternal tissues involved in absorption and excretion, the bone marrow and spleen. Fetal blood and liver levels were 3.8‐ to 8.8‐fold higher than maternal blood levels at all timepoints. CONCLUSIONS: Excluding tissues involved in absorption and excretion, the highest concentrations of radioactivity were observed in tissues involved in hemoglobin synthesis and/or destruction in both the mother and the fetus and likely account for the maternal reticulocytopenia and embryotoxicity. Radioactivity concentrations in the fetal blood were 2.1‐ to 2.8‐fold higher than maternal bone marrow at all timepoints and this difference could contribute to the lower dose threshold for embryotoxicity. Birth Defects Res (Part B) 89:364–375, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Clinical studies have suggested that pioglitazone, an insulin sensitizer, has a stronger effect in women than in men. To determine the sex difference in the pharmacokinetics of pioglitazone, we examined the plasma and white adipose tissue levels of pioglitazone and its active metabolites (M-II, M-III and M-IV) in male and female rats treated with a single or repeated oral administration of pioglitazone (10 mg/kg). The AUCs of pioglitazone (149.6+/-22.6 vs. 103.3+/-14.0 microg.h/ml; P<0.01), M-III (31.4+/-8.1 vs. 20.2+/-4.7 microg.h/ml; P<0.05) and M-IV (41.9+/-15.5 vs. 14.1+/-1.6 microg.h/ml; P<0.01) were larger in female rats than in male rats, but the levels of M-II were similar. Any of the compounds did not accumulate in plasma after repeated administration. According to kinetic model analysis, the apparent elimination rate of pioglitazone and the formation rate of M-II were faster in male rats than in female rats. No significant sex difference was found in the tissue-to-plasma concentration ratios of pioglitazone or its active metabolites in white adipose tissue. These results suggest that there are sex differences in the plasma levels of pioglitazone and some of its active metabolites and that those differences are reflected in differences in white adipose tissue levels.  相似文献   

12.
BACKGROUND: The period of neurogenesis represents a window of susceptibility for in utero methylmercury (MeHg) exposure. This study examined the toxicokinetics of potentially neurotoxic doses of MeHg during neurogenesis in the developing rat to provide additional information in the areas of mercury speciation and inter-study variability. METHODS: Pregnant Sprague-Dawley rats were dosed s.c. with 5-22 mg/kg MeHg on Day 11 of gestation to target rapidly dividing cells of the developing midbrain. Maternal liver, kidney, skin, blood, placenta, and the embryonic body and brain were evaluated for total and inorganic mercury content at 24, 48, and 72 hr after dosing. Tissue Hg partitioning ratios derived from our data were then compared to those derived from previous studies. RESULTS: Mercury was present in all tissues examined by 24 hr after dosing, and levels remained relatively stable over the subsequent 2 days in most tissues. The exceptions were the maternal blood and kidney, in which total mercury decreased significantly over the three days after dosing. Inorganic mercury concentrations were similarly stable over time. At maternal MeHg doses above 12 mg/kg, non-linearities were observed in mercury accumulation in the embryo, placenta and maternal liver. The mercury tissue partitioning coefficients ranged from 0.09 for maternal blood:embryo to 1.97 for maternal blood:kidney. CONCLUSIONS: Our observations at the 5 mg/kg dose were consistent with those of previous studies that involved evaluations at slightly later gestational times. The estimates of tissue partitioning coefficients we derived using multiple studies provide valuable insight into the effects of inter-study variability.  相似文献   

13.
Abstract— The influence of general anaesthesia upon the metabolic state of the brain was evaluated from the tissue concentrations of ATP, ADP and AMP, and from the concentrations of glycolytic and citric acid cycle intermediates, in immobilized and artificially ventilated rats anaesthetized either with 70% N2O, 1% halothane or 60 mg/kg of pentobarbitone. The results were compared to the results obtained on awake animals in fentanyl-analgesia. The adenylate energy charge was identical in all groups studied and there were no H+-independent changes in the phosphocreatine/creatine ratios. In pentobarbitone anaesthesia there was an accumulation of glucose 6-phosphate and a fall in fructose 1,6-diphosphate, indicating inhibition of phosphofructokinase. No significant changes in these metabolites were observed with halothane or nitrous oxide anaesthesia and the substrate patterns differed from that obtained with pentobarbitone.
The blood glucose concentrations were higher in the unanaesthetized, immobilized rats given fentanyl than in those anaesthetized. There was a direct relationship between the glucose concentrations in blood and in tissue. The glucose concentration ratios intracellular water to blood were higher in the anaesthetized than in the unanaesthetized animals, increasing with increasing depth of anaesthesia. The intracellular lactate concentrations were lowest in the groups given pentobarbitone and fentanyl citrate, and there was thus no direct relationship between lactate concentration and depth of anaesthesia.  相似文献   

14.
Development of iniparib as an anti-cancer agent was hindered in part by lingering questions regarding its mechanism of action, the activity of its metabolites, and their potential accumulation in tumors. Due to strong similarities in metabolism of iniparib between humans and dogs, a veterinary clinical trial in pet dogs with spontaneous cancers was designed to answer specific questions pertaining to pharmacokinetic exposures and tolerability of iniparib. Dogs were treated with iniparib alone and in combination with carboplatin chemotherapy. Iniparib doses ranged between 10–70 mg/kg intravenously (IV). Plasma, tumor and normal tissue samples were collected before and at various time points scheduled after exposure for pharmacokinetic and biologic analysis. The primary endpoints included characterization of dose-limiting toxicities (DLT) and determination of the drug exposures that could be achieved in both normal and tumor tissues. Nineteen dogs were treated. DLT included fever, anorexia, diarrhea, neutropenia, and thrombocytopenia; most effects were attributable to carboplatin based on the timing of adverse event onset. The maximum tolerated dose (MTD) of iniparib was not identified. Moderate to high variability in plasma exposure was noted for iniparib and all metabolites between animals. When quantifiable, iniparib and metabolite plasma:tumor ratios were < 0.088 and <1.7, respectively. In this study, iniparib was well tolerated as a single agent and in combination with carboplatin over a range of doses. However, clinically relevant concentrations of the parent drug and selected metabolites were not detectable in canine tumor tissues at any studied dose, thus eliminating expectations for clinical responses in dogs or humans. Negative clinical trials in humans, and the uncertainties of its mechanism of action, ultimately led to the decision to stop clinical development of the drug. Nevertheless, the questions that can be asked and answered within the comparative oncology approach are evident from this successfully executed comparative clinical trial and exemplify the value of such studies in drug development.  相似文献   

15.
Glucose intolerance was induced in rats by iv infusion of streptozotocin (STZ) in doses of 30, 40, 50, and 100 mg/kg. Serum glucose concentrations were elevated versus controls and weight gains were reduced in a dose-dependent fashion up to 50 mg/kg. Urine outputs and blood urea nitrogen (BUN) values were higher than control values in the animals treated with 40 and 50 mg/kg and serum albumin concentrations were decreased after infusion with 50 mg STZ/kg. Lung phosphatidylcholine (PC) concentrations and dry-to-wet weight ratios were unchanged by STZ treatment, while lung protein and disaturated phosphatidylcholine (DSPC) concentrations were depressed in the 50-mg/kg group. Animals surviving treatment with 100 mg/kg demonstrated increased fasting blood glucose levels, BUN values, and 48-hr urine outputs, and decreased lung protein levels. However, these alterations were less than those found in the 50-mg/kg animals. Pulmonary concentrations of PC, DSPC, and lung dry-to-wet weight ratios were unchanged. It was found advantageous to express the results relative to fasting blood glucose levels. This demonstrated that urine output and BUN values increased and weight gain decreased with rising glucose concentrations, but serum albumin decreased only in moderate and severe hyperglycemia. Fasting glucose concentrations greater than 400 mg/dl were associated with reduced lung DSPC and protein levels, while pulmonary PC and dry-to-wet weight ratios demonstrated no change with increasing hyperglycemia.  相似文献   

16.
Recently resveratrol, a compound naturally occurring in various plants, has been proposed as a potential anti-obesity compound. The aim of the present work was to analyse the effects of different doses of resveratrol on body fat and serum parameters in rats. Thirty-two male Sprague-Dawley rats were randomly divided into four groups and fed on a hypercaloric diet for 6 weeks. The doses oftrans-resveratrol used were 6, 30 and 60 mg/kg body weight/d in RSV1, RSV2 and RSV3 groups respectively. The stability of resveratrol when added to the diet was evaluated. Blood samples were collected, and white adipose tissue from different anatomical locations, interscapular brown adipose tissue, gastrocnemious muscles and liver were weighed. Commercial kits were used to measure serum cholesterol, glucose, triacylglycerols and non-esterified fatty acids. While the lowest dose did not have a body fat reducing effect, the intermediate dose reduced all the white adipose depots. The highest dose significantly reduced mesenteric and subcutaneous depots but not epididymal and perirenal tissues. Although the reduction in all the anatomical locations analysed was 19% in the RSV3 group, in the RSV2 group it was 24%. No significant differences among the experimental groups were found in brown adipose tissue, gastrocnemious muscle or liver weights. Serum parameters were not affected by resveratrol intake because no differences among the experimental groups were observed. These results suggest that resveratrol is a molecule with potential anti-obesity effect. The most effective of the three experimental doses was 30 mg/kg body weight/d.  相似文献   

17.
Adipose tissue kinetics of chlorpromazine and imipramine, two drugs which are more lipophilic than thiopental, were studied in the rat. After single i.v. doses, the time-course of drug distribution was followed in adipose and various other tissues, until their concentrations in adipose tissues declined. Under these conditions the two drugs behaved almost identically. Among the tissues analyzed, the lowest concentrations were found in adipose tissue, with the exception of plasma. At its maximum concentration after about 30 minutes, total adipose tissue contained only 3 % of the dose of administered drugs. Adipose/plasma and adipose/lung concentration ratios were 2–5 and 0.05, respectively.After maximum tolerated oral doses of imipramine for 3 weeks, similar steady state concentration ratios (plasma:adipose:brain:lung 1:3:12:96) were observed. In adipose tissue the imipramine/desmethylimipramine ratio was about 1, and the desmethylimipramine steady state levels did not increase with time. Literature data indicate that many basic lipophilic drugs are not stored in adipose tissue. This is now clearly shown for chlorpromazine and imipramine, even under extreme, subchronic conditions in the case of imipramine.  相似文献   

18.
Anidulafungin, an echinocandin, is currently approved for treatment of fungal infections in adults. There is a high unmet medical need for treatment of fungal infections in neonatal patients, who may be at higher risk of infections involving bone, brain, and heart tissues. This in vivo preclinical study investigated anidulafungin distribution in plasma, bone, brain, and heart tissues in neonatal rats. Postnatal day (PND) 4 and PND 8 Fischer (F344/DuCrl) rats were dosed subcutaneously once with anidulafungin (10 mg/kg) or once daily for 5 days (PND 4–8). Plasma and tissue samples were collected and anidulafungin levels were measured by liquid chromatography‐tandem mass spectrometry. The mean plasma Cmax and AUC0‐24 values were consistent with single‐dose plasma pharmacokinetics (dose normalized) reported previously for adult rats. Observed bone concentrations were similar to plasma concentrations regardless of dosing duration, with bone‐to‐plasma concentration ratios of approximately 1.0. Heart concentrations were higher than plasma, with heart to plasma concentration ratios of 1.3‐ to 1.8‐fold. Brain concentrations were low after single dose, with brain‐to‐plasma concentration ratio of approximately 0.23, but increased to approximately 0.71 after 5 days of dosing. Tissue concentrations were nearly identical after single‐dose administration in both PND 4 and PND 8 animals, indicating that anidulafungin does not appear to differentially distribute in this period in neonatal rats. In conclusion, anidulafungin distributes to bone, brain, and heart tissues of neonatal rats; such results are supportive of further investigation of efficacy against infections involving bone, brain, and heart tissues.  相似文献   

19.
To elucidate the mechanism by which hydroxychloroquine (HCQ) affects glucose metabolism, the effect of this drug and its enantiomers on insulin metabolism was studied using the cytosolic fraction of liver homogenates from healthy and diabetic rats. Eadie-Hofstee plots were monophasic suggesting that only a one-component enzyme system is involved in insulin degradation in the fraction used. Reaction velocity (V) vs substrate concentration plots were consistent with a Vmax model. HCQ caused a significant reduction in Vmax and Vmax/Km values in both healthy (Vmax, 3.63 +/- 0.46 vs 1.97 +/- 0.13, ng/min/mg; protein P < 0.001; and Vmax/Km 0.265 +/- 0.015 vs 0.112 +/- 0.004, ml/min/g protein) and diabetic rats (Vmax, 0.718 +/- 0.06 vs 0.360 +/- 0.024, ng/min/mg protein; and Vmax/Km, 0.05 +/- 0.002 vs 0.023 +/- 0.001, ml/min/g protein). Significant reduction in the V was observed in the presence of racemic (rac)-, R-, or S-HCQ. Ranking of the inhibitory potency was HCQ > S = R except at highest examined concentration (20 mg/mL) which was HCQ > S > R. In conclusion, the effect of HCQ on insulin degradation appears to be, in part, through inhibition of cytosolic insulin metabolizing enzyme. The effect is not stereoselective except at high concentrations. The R- and S-HCQ may have synergistic effects on inhibition of insulin degradation.  相似文献   

20.
Hamidi M 《Life sciences》2006,79(10):991-998
The effect of p-glycoprotein inhibition on tissue distribution of indinavir, an anti-HIV (human immunodeficiency virus) protease inhibitor drug, has been evaluated. Indinavir was co-administered intravenously in rats along with a p-glycoprotein inhibitor, PSC833, and the drug concentrations in plasma and various tissues were determined using a HPLC method. Additionally, initial uptake clearance of indinavir was evaluated in the brain and testes. The highest increasing effect of p-glycoprotein inhibition on the tissue uptake ratios of indinavir was found in central nervous system (CNS). The estimated tissue extraction the drug was indicative of (i) limited drug entry to brain parenchyma, which was increased significantly by p-glycoprotein inhibition, (ii) non-restricted drug entry to testes, heart and spleen, which was increased significantly in the case of heart and decreased in the case of testes and spleen as a result of p-glycoprotein inhibition, and (iii) drug accumulation in liver and small intestine and, to a lesser extent, kidney, which was not affected by p-glycoprotein inhibition. The uptake clearances of indinavir by brain parenchyma in PSC833-treated and control rats were 68.80+/-8.65 and 21.63+/-4.28 micro/min/g and the corresponding values for the testes were 39.84+/-4.90 and 36.65+/-2.54 microl/min/g. The difference was significant only in the case of brain parenchyma (P<0.001). These data showed that p-glycoprotein inhibition increases the CNS uptake of indinavir markedly and has some transient minor effects on drug uptake by some other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号