首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pregnant CD1 mice were exposed or sham-exposed from day 0 to day 17 of gestation to a 50 Hz sinusoidal magnetic field at 20 mT (rms). Preimplantation and postimplantation survival were assessed and fetuses examined for the presence of gross external, internal, and skeletal abnormalities. There were no statistically significant field-dependent effects on preimplantation or postimplantation survival, sex ratio, or the incidence of fetuses with internal or skeletal abnormalities. Magnetic field exposure was, however, associated with longer and heavier fetuses at term, with fewer external abnormalities. The results lend no support to suggestions of increased rates of spontaneous abortion or congenital malformation following prenatal exposure to power frequency magnetic fields. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Zeng Q  Ke X  Gao X  Fu Y  Lu D  Chiang H  Xu Z 《Bioelectromagnetics》2006,27(4):274-279
Previously, we have reported that exposure to 50 Hz coherent sinusoidal magnetic fields (MF) for 24 h inhibits gap junction intercellular communication (GJIC) in mammalian cells at an intensity of 0.4 mT and enhances the inhibition effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) at 0.2 mT. In the present study, we further explored the effects of incoherent noise MF on MF-induced GJIC inhibition. GJIC was determined by fluorescence recovery after photobleaching (FRAP) with a laser-scanning confocal microscope. The rate of fluorescence recovery (R) at 10 min after photobleaching was adopted as the functional index of GJIC. The R-value of NIH3T3 cells exposed to 50 Hz sinusoidal MF at 0.4 mT for 24 h was 30.85 +/- 14.70%, while the cells in sham exposure group had an R-value of 46.36 +/- 20.68%, demonstrating that the GJIC of NIH3T3 cells was significantly inhibited by MF exposure (P < .05). However, there were no significant differences in the R-values of the sham exposure, MF-plus-noise MF exposure (R: 49.58 +/- 19.38%), and noise MF exposure groups (R: 46.74 +/- 21.14%) (P > .05), indicating that the superposition of a noise MF alleviated the suppression of GJIC induced by the 50 Hz MF. In addition, although MF at an intensity of 0.2 mT synergistically enhanced TPA-induced GJIC inhibition (R: 24.90 +/- 13.50% vs. 35.82 +/- 17.18%, P < .05), further imposition of a noise MF abolished the synergistic effect of coherent MF (R: 32.51 +/- 18.37%). Overall, the present data clearly showed that although noise MF itself had no effect on GJIC of NIH3T3 cells, its superposition onto a coherent sinusoidal MF at the same intensity abolished MF-induced GJIC suppression. This is the first report showing that noise MF neutralizes 50 Hz MF-induced biological effect by using a signaling component as the test endpoint.  相似文献   

3.
4.
The question whether extremely low frequency magnetic fields (ELFMFs) may contribute to mutagenesis or carcinogenesis is of current interest. In order to evaluate the possible genotoxic effects of ELFMFs, human blood cells from four donors were exposed in vitro for 48 h to 50 Hz, 1 mT uniform magnetic field generated by a Helmholtz coil system. Comet assay (SCGE), sister chromatid exchanges (SCE), chromosome aberrations (CAs), and micronucleus (MN) test were used to assess the DNA damage. ELF pretreated cells were also irradiated with 1 Gy of X-ray to investigate the possible combined effect of ELFMFs and ionizing radiation. Furthermore, nuclear division index (NDI) and proliferation index (PRI) were evaluated. Results do not evidence any DNA damage induced by ELFMF exposure or any effect on cell proliferation. Data obtained from the combined exposure to ELFMFs and ionizing radiation do not suggest any synergistic or antagonistic effect.  相似文献   

5.
Plasma membrane Ca(2+) channels in immunocytes from the mussel Mytilus galloprovincialis exposed to 50 Hz sine wave magnetic fields (MFs) of various strengths were studied. At levels of 300 microT and above, MFs reduce shape changes in immunocytes induced by the chemotactic substance N-formyl-Meth-Leu-Phe, and this effect involves L-type Ca(2+) channels. Upon the addition of the Ca(2+) blocker verapamil to molluscan immunocytes exposed to MFs results in a synergistic cytotoxic action, while in the presence of the Ca(2+) opener SDZ-202, 791, a reactivation of the cells is observed. This suggests that, as previously reported for potassium channels, the damage to Ca(2+) channels induced by short exposure to MF at appropriate intensities is not permanent.  相似文献   

6.
7.
The effect of exposure to 50 Hz electromagnetic field on a human T-leukaemia cell line (Jurkat) was investigated by evaluating the reactive oxygen species (ROS) production and apoptosis, both spontaneous and induced by a specific anti Fas/CD95 monoclonal antibody (anti-Fas). Our results suggest that 1 h intermittent (5 min field on/10 min field off) exposure does not affect ROS formation, while a slight but statistically significant decrease of both spontaneous and anti-Fas-induced apoptosis was observed.  相似文献   

8.
This study evaluated the effect of sinusoidal 50 Hz magnetic field on the basal and human chorionic gonadotropin (hCG)-stimulated testosterone (T) production of 48-h mouse Leydig cell culture. The luteinizing hormone (LH) analog hCG was used to check the T response of the controls and to evaluate the possible effect of the applied magnetic field on the steroidogenic capacity of the exposed cells. Leydig cells were obtained from the testes of 35- to 45-g CFLP mice and isolated by mechanical dissociation without enzyme treatment. The cell cultures were exposed to sinusoidal 50 Hz 100 μT (root mean square) AC magnetic field during the entire time of a 48-h incubation. Testosterone content of the culture media was measured by radioimmunoassay. In cultures exposed to the magnetic field, a marked increase of basal T production was found (P < .05), compared with the unexposed controls, whereas no significant difference was seen between the exposed or unexposed cultures in the presence of maximally stimulating concentration of hCG. These findings demonstrate that sinusoidal 50 Hz 100 μT magnetic fields are able to stimulate the basal T production of primary mouse Leydig cell culture, leaving the steroidogenic responsiveness to hCG unaltered. Bioelectromagnetics 19:429–431, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Interference of 50 Hz extremely low frequency magnetic fields (ELF-MF) with the known aneugen vinblastine (VBL) on micronucleus formation was tested with the in vitro cytokinesis block micronucleus assay in human lymphocyte cultures. Isolated lymphocyte cultures were prepared from 18 individuals. Three groups of quadruplicate cultures from six unrelated individuals were exposed to 50 Hz ELF-MF of background (bkg), 80 and 800 microT, respectively, during the complete incubation period (72 h). Twenty-four hours after culture initiation, one replicate culture from each individual within each ELF-MF group was exposed to 0, 5, 10, or 15 ng/ml VBL. The isolated lymphocyte cultures were scored for the presence of micronuclei, the nuclear division index (NDI), and apoptosis. As expected, increased VBL concentration resulted in an increased micronucleus and apoptosis frequency and in a decreased NDI. In the presence of VBL, there was a systematic tendency for increased micronucleus and apoptosis frequency in the ELF-MF exposed groups compared to the bkg group. In the absence of VBL, we observed no statistically significant effect of ELF-MF on micronucleus induction or apoptosis frequency, but the NDI was significantly higher in the 800 microT group compared to the other groups, suggesting an effect of ELF-MF on cell proliferation. An interaction between ELF-MF and VBL on NDI was observed. This interaction reflected the drastic decrease in NDI due to coexposure to VBL.  相似文献   

10.
This investigation studied the effect of 50 Hz electric and magnetic fields on the human heart. The electrocardiograms of 27 transmission-line workers and 26 male volunteers were recorded with a Holter recorder both in and outside the fields. The measurements took from half an hour to a few hours. The electric field strength varied from 0.14 to 10.21 kV/m and the magnetic flux density from 1.02 to 15.43 μT. Analysis of the ECG recordings showed that extrasystoles or arrhythmias were as frequent outside the field as in the field. In some cases a small decrease in heart rate was observed after field exposure. © 1993 Wiley-Liss, Inc.  相似文献   

11.
The effect induced by exposure to 50 Hz magnetic fields (MFs) in immunocytes from the mussel Mytilus galloprovincialis is evaluated. The whole animal was exposed for 15 and 30 min to MF intensities ranging from 200 to 1,000 microT. The changes in the cellular shape of immunocytes, expressed as shape factor (SF), were studied at different times after addition of the chemotacting substance N-formyl-Meth-Leu-Phe (fMLP). Results show that MFs provoke differing delays in fMLP-induced cellular shape changes: 200 microT are ineffective, while levels from 300 microT upwards cause a significant increase in immunocyte SF values compared to controls. Reactivation of the cells is possible up to an intensity of 600 microT. The use of PCO 400, an opener of ATP-sensitive K+ channels, shows that potassium channels are involved in the effect of MFs on M. galloprovincialis immunocytes.  相似文献   

12.
The effect of in vivo exposure of mice to a 60 Hz sinusoidal magnetic field (MF) at 2.0 mT on male germ cells was studied. The cytological endpoints measured included meiotic chromosome aberrations in spermatocytes and sperm morphology. Three independent experiments were carried out: (a) animals exposed for 72 h, (b) 10 days/8 h daily, and (c) 72 h exposure to MF plus 5 mg/kg of Mitomycin-C. No statistically significant differences indicative of MF effects were observed between MF exposed and control animals. In addition, an opposite effect between MF exposure and Mitomycin-C treatment in terms of chromosomal aberrations and sperm morphology was observed.  相似文献   

13.
To investigate the influence of physiological parameters such as cell density and three-dimensional cell contact on the biological action of a 2 mT/50 Hz magnetic field, mouse fibroblasts were exposed as monolayers and as multicellular spheroids. Changes in cyclic AMP content of cells and alterations in gap junction-mediated intercellular communication were measured immediately after 5 min of exposure to the field. In monolayers of intermediate cell density (1 × 105 cells/cm2), the field treatment caused an increase in cAMP to 121% of the control level, whereas, at 3 × 105 cells/cm2 (near confluence), a decrease to 88% of the unexposed cells was observed. Furthermore, field exposure stimulated gap-junction communication to 160% of the control level as determined by Lucifer yellow dye exchange. In spheroids, alterations in the radial profile of cellular cAMP were observed that were due both to field-induced local cAMP changes and to increased gap-junction permeability for this second messenger, the latter causing radial cAMP gradients to be flattened. The results indicate a strong dependence of field action on physiological parameters of the system exposed. © 1995 Wiley-Liss, Inc.  相似文献   

14.
To explore whether the extremely low frequency (ELF) electromagnetic fields (EMFs) may act as cancer promoters or be synergistic with 12-O-tetradecanoylphorbol-13-acetate (TPA) in cancer promotion, an experiment was conducted on the effects of 50 Hz magnetic fields (MFs) on gap junctional intercellular communication (GJIC) of Chinese hamster lung (CHL) cells. Lucifer dye was loaded into CHL cells by iontophoretic injection, and the number of dye-coupled cells (DCC) 5 min after the injection was adopted as the index of GJIC. The effects of TPA at different concentrations and magnetic fields at different intensities, combined with 5 ng/ml TPA, were studied. The results showed that the suppression of TPA on GJIC was dependent on TPA concentration; the threshold concentration of TPA for CHL cells was between 1 and 5 ng/ml. After exposure to 0.8 mT magnetic field for 24 h, the number of DCC decreased to 6.08 +/- 1.59, whereas the number of DCC in the control group was 9.84 +/- 2.27 (P < .05). When the cells were exposed at 0.2, 0.4, and 0.8 mT for 24 h, combined with 5 ng/ml TPA treatment during the last 1 h, the number of DCC decreased to 5.52 +/- 1.53, 5.00 +/- 1.22, and 4.00 +/- 1.29, respectively, which were significantly lower than the values for the group treated with 5 ng/ml TPA alone (6.38 +/- 1.39). It is suggested that certain intensities of 50 Hz magnetic field might act as cancer promoters, be additive with other promoters in cancer promotion, or both.  相似文献   

15.
Drosophila flies placed in a habitat with two lateral boxes demonstrated sensitivity to magnetic fields: Oviposition decreased by exposure to pulsated extremely low frequency (ELF) (100)Hz, 1.76 miliTesla (mT) and sinusosidal fields (50 Hz, 1 mT), while there was no initial effect of exposure to a static magnetic field (4.5 mT). Drosophila eggs treated for 48 h with the above described fields showed that (1) mortality of eggs was lower in controls than in eggs exposed to all tested magnetic fields; (2) mortality of larvae increased when a permanent magnet was used; (3) mortality of pupae was highest when a permanent magnet was used; and (4) general adult viability was highest in controls (67%) and diminished progressively when eggs were exposed to pulsated (55%), sinusoidal (45%), and static (35%) magnetic fields.  相似文献   

16.
Incubation for 72 h of human peripheral blood cultures in the presence of 60 Hz sinusoidal magnetic fields (MF) at magnetic flux densities of 1.0, 1.5, and 2.0 mT led to stimulation of lymphocyte proliferation but had no influence on the frequency of sister-chromatid exchanges (SCE). The cytotoxic potential of MF combined with the mutagen Mitomycin-C also was analyzed. An opposite effect between MF exposure and Mitomycin-C treatment in terms of cell kinetics and mitotic rate was found, whereas no variation in SCE frequency was observed for this coexposure condition.  相似文献   

17.
Intense magnetic fields have been shown to affect memory-related behaviours of rodents. A series of experiments was performed to investigate further the effects of a 50 Hz magnetic field on the foraging behaviour of adult, male C57BL/6J mice performing a spatial learning task in an eight-arm radial maze. Exposure to vertical, sinusoidal magnetic fields between 7.5 μT and 7.5 mT for 45 min immediately before daily testing sessions caused transient decreases in performance that depended on the applied flux density. Exposure above a threshold of between 7.5 and 75 μT significantly increased the number of errors the animals made and reduced the rate of acquisition of the task without any effect on overall accuracy. However, the imposition of a 45-minute delay between exposure at 0.75 mT and behavioural testing resulted in the elimination of any deficit. Similarly, exposure to fields between 7.5 μT and 0.75 mT for 45 min each day for 4 days after training had no amnesic effects on the retention and subsequent performance of the task. Overall, these results provide additional evidence that 50 Hz magnetic fields may cause subtle changes in the processing of spatial information in mice. Although these effects appear dependent on field strength, even at high flux densities the field-induced deficits tend to be transient and reversible. Bioelectromagnetics 19:486–493, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
In the past, epidemiological studies indicated a possible correlation between the exposure to ELF fields and cancer. Public concern over possible hazards associated with exposure to extremely low frequency magnetic fields (ELFMFs) stimulated an increased scientific research effort. More recent research and laboratory studies, however, have not been able to definitively confirm the correlation suggested by epidemiological studies. The aim of this study was to evaluate the effects of 50 Hz magnetic fields in human blood cells exposed in vitro, using several methodological approaches for the detection of genotoxicity. Whole blood samples obtained from five donors were exposed for 2 h to 50 Hz, 1 mT uniform magnetic field generated by a Helmholtz coil system. Comet assay, sister chromatid exchanges (SCE), chromosome aberrations (CA), and micronucleus (MN) tests were used to assess DNA damage, one hallmark of malignant cell transformation. The effects of a combined exposure with X-rays were also evaluated. Results obtained do not show any significant difference between ELFMFs exposed and unexposed samples. Moreover, no synergistic effect with ionizing radiation has been observed. A slight but significant decrease of cell proliferation was evident in ELFMFs treated samples and samples subjected to the combined exposure.  相似文献   

19.
20.
To improve the assessment of magnetic field exposures for occupational health studies, the Multiwave® System III (MW3) was developed to capture personal exposures to the three‐dimensional magnetic field vector B (t) in the 0–3000 Hz band. To process hundreds of full‐shift MW3 measurements from epidemiologic studies, new computer programs were developed to calculate the magnetic field's physical properties and its interaction with biological systems through various mechanisms (magnetic induction, radical pair interactions, ion resonance, etc.). For automated calculations in the frequency domain, the software uses new algorithms that remove artifacts in the magnetic field's Fourier transform due to electronic noise and the person's motion through perturbations in the geomagnetic field from steel objects. These algorithms correctly removed the Fourier transform artifacts in 92% of samples and have improved the accuracy of frequency‐dependent metrics by as much as 3300%. The output of the MwBatch software is a matrix of 41 exposure metrics calculated for each 2/15 s sample combined with 8 summary metrics for the person's full‐period exposure, giving 294 summary‐exposure metrics for each person monitored. In addition, the MwVisualizer software graphically explores the magnetic field's vector trace, its component waveforms, and the metrics over time. The output was validated against spreadsheet calculations with pilot data. This software successfully analyzed full‐shift MW3 monitoring with 507 electric utility workers, comprising over 1 million vector waveforms. The software's output can be used to test hypotheses about magnetic field biology and disease with biophysical models and also assess compliance with exposure limits. Bioelectromagnetics 31:391–405, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号