首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A retention model for the chiral separation of an uncharged solute, felodipine, on CHIRAL-AGP, using a micellar mobile phase is proposed. The model assumes the presence of two stereoselective sites and each enantiomer was found to interact with different sites. Addition of a chiral aliphatic alcohol, (+)-(S)-2-octanol, preferentially interacted with the binding site for (?)-(S)-felodipine. The monomeric form of the micellar agent (Tween® 20) competed with the enantiomers for the adsorption sites, and the formation of a 1:1 complex between the enantiomers and the micelles was assumed. The retention of the solutes was effectively controlled by adding small quantities (<1.63 × 10?3 M) of the nonionic detergent Tween 20 to the mobile phase. Baseline separation was achieved by addition of 1.0 mM n-octylamine to the mobile phase; 8.14 × 10?4 M Tween 20 in phosphate buffer pH 7.0. The separation factor (α = 1.74) was unaffected by the detergent concentration in the presence of 1.0 mM n-octylamine. © 1995 Wiley-Liss, Inc.  相似文献   

2.
A comparison of the enantiomeric resolution of (+/-)-threo-methylphenidate (MPH) (Ritalin) was achieved on different polysaccharide based chiral stationary phases. The mobile phase used was hexane-ethanol-methanol-trifluoroacetic acid (480:9.75:9.75:0.5, v/v/v/v). Benzoic acid and phenol were used as the mobile phase additives for the enantiomeric resolution of MPH on Chiralcel OB column only. The alpha values for the resolved enantiomers were 1.34, 1.29, 1.30, and 1.24 on Chiralpak AD, Chiralcel OD, Chiralcel OB (containing 0.2 mM benzoic acid in mobile phase), and Chiralcel OB (containing 0.2 mM phenol in mobile phase) columns, respectively. The R(s) values were 1.82, 1.53, 1.19, and 1.10 on Chiralpak AD, Chiralcel OD, Chiralcel OB (containing 0.2 mM benzoic acid in mobile phase), and Chiralcel OB (containing 0.2 mM phenol in mobile phase), respectively. The role of benzoic acid and phenol as mobile phase additives is discussed.  相似文献   

3.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

4.
A selective chiral high performance liquid chromatographic (HPLC) method coupled with achiral column was developed and validated to separate and quantify tetrahydropalmatine (THP) enantiomers in dog plasma. Chromatography was accomplished by two steps: (1) racemic THP was separated from biological matrix and collected on a Kromasil C18 column (150 mmx4.6 mm, 5 microm) with the mobile phase acetonitrile-0.1% phosphoric acid solution, adjusted with triethylamine to pH 6.15 (47:53); (2) enantiomeric separation was performed on a Chiralcel OJ-H column (250 mmx4.6 mm, 5 microm) with the mobile phase anhydrous ethanol. The detection wavelength was set at 230 nm. (+)-THP and (-)-THP were separated with a resolution factor (Rs) of at least 1.6 and a separation factor (alpha) greater than 1.29. Linear calibration curves were obtained over the range of 0.025-4 microg/ml in plasma for each of (+)-THP and (-)-THP (R2>0.999) with a limit of detection (LOD) of 0.005 microg/ml and the recovery was greater than 88% for each enantiomer. The relative standard deviation (R.S.D.) and relative error values were less than 10% at upper and lower concentrations. The method was used to determine the pharmacokinetics of THP enantiomers after oral administration of racemic THP. The results presented herein showed the stereoselective disposition kinetics of THP in dogs and were a further contribution to the understanding of the kinetic behavior of THP analogues.  相似文献   

5.
A direct, isocratic, and simple chromatographic method is described for the resolution of racemic albuterol using the α1-acid glycoprotein chiral stationary phase (AGP-CSP) under reverse phase conditions. The effect of various organic modifiers, temperature, and phosphate buffer ionic strength on the separation factor (α) and stereochemical resolution factor (Rs) has been studied. The enantiomeric separation of albuterol was also achieved using a urea-type CSP of (S)-indoline-2-carboxylic acid and (R)-1-(α-naphthyl)ethylamine, known as Chirex 3022, running in the normal phase mode. The effect of different organic acids added to the mobile phase was examined and the chiral recognition mechanism(s) is discussed. Solid phase extraction with C18 Sep-Pak cartridges was applied as a clean-up step to determine the enantiomeric ratio between (?)-R and (+)-S-albuterol in pharmaceutical formulations and in human plasma. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high‐performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed. Two chiral stationary phases (CSPs) were compared with separate the enantiomers. Elution was conducted in the organic mode with n‐hexane and iso‐propanol (IPA) (80/20 v/v) as the mobile phases; the enantiomeric excess (ee) values of the synthetic R‐clausenamidone and S‐clausenamidone and R‐neoclausenamidone and S‐ neoclausenamidone were higher than 99.9%, and the enantiomeric ratio (er) values of these isomers were 100:0. Enantioselectivity and resolution (α and Rs, respectively) levels with values ranging from 1.03 to 1.99 and from 1.54 to 17.51, respectively, were achieved. The limits of detection and quantitation were 3.6 to 12.0 and 12.0 to 40.0 ug/mL, respectively. In addition, the thermodynamics study showed that the result of the mechanism of chiral separation was enthalpically controlled at a temperature ranging from 288.15 to 308.15 K. Furthermore, docking modeling showed that the hydrogen bonds and π‐π interactions were the major forces for chiral separation. The present chiral HPLC method will be used for the enantiomeric resolution of the clausenamidone derivatives.  相似文献   

7.
To chiroptically characterize the enantiomers of omeprazole and some structurally related benzimidazoles with circular dichroism (CD), preparative chiral liquid chromatography was utilized for the isolation of the pure enantiomers. A limited analytical column screen was performed identifying Kromasil-CHI-TBB and the amylose-based phases Chiralpak AD and AS as possible chiral stationary phases (CSPs) for the preparative scale separation of the enantiomers of the different benzimidazoles. Optimization of the chromatographic conditions with respect to retention, enantioseparation, and resolution was achieved by variation of the mobile phase constituents as well as of temperature. Because of the lability of the compound in slightly acidic media, supercritical fluid chromatography (SFC) could not be applied for a preparative scale separation of the enantiomers. The separation of omeprazole was optimized to give high throughput (2.6 kg racemate/kg CSP/day) and high enantiomeric excess of the obtained isomers. The absolute configurations of the pure enantiomers of rabeprazole, lansoprazole, and pantoprazole were determined from the strong correlation to the CD spectrum of (+)-(R)-omeprazole. For all the compounds, the (+)-enantiomers displayed similar chiroptical features as (+)-(R)-omeprazole and were thus assigned the (R)- configuration. Elution order of the optical isomers was monitored by injecting racemic solutions spiked with one of the isomers and also by an on-line laser polarimeter. Both the type of CSP and also the mobile phase constituents had a strong effect on elution order of the enantiomers.  相似文献   

8.
An achiral/chiral high-performance liquid chromatographic system for the analysis of total warfarin together with the (R)- and (S)-enantiomers in clinical samples has been developed. The achiral analysis is achieved using a C8 column, which is coupled to a chiral stationary phase, alpha 1-acid glycoprotein (AGP), thereby allowing for analysis of warfarin isomers without interfering serum peaks. A 0.015 M phosphate buffer mobile phase with 15% v/v propan-2-ol (pH 7.0) was used on the C8/AGP system. UV analysis at 308 nm was used for quantitation of total warfarin on the C8 column and fluorescence (excitation 300 nm, emission 390 nm) detection was employed for isomer quantitation on the AGP. Retention time of total warfarin on the C8 column was 5.95 min, while that of the (S)- and (R)-warfarin on the AGP column was 10.38 and 12.69 min, respectively. Peak resolution of the warfarin isomers was 1.64. All serum samples were subjected to solid-phase extraction. Data from two patients in a single dose study indicate that a two-compartmental model could represent the warfarin concentration-time data with enterohepatic circulation. In some patients studied during steady state therapy, concentrations of (S)-warfarin were greater than (R)-warfarin indicating that the clearance of the former is slower in these patients.  相似文献   

9.
The retention order of the enantiomers of mosapride could be controlled by column temperature and mobile phase pH. In the presented paper, temperature studies have been used to study the thermodynamics of the reversal in retention order. A linear relationship was obtained plotting the logarithm of the capacity factor versus the inverted column temperature. However, at higher mobile phase pHs, the logarithm of the separation factor versus the inverted column temperature showed a non-linear behaviour and at the highest mobile phase pH used (pH=7.4), an optimum in the separation factor was observed. The plots showed that the thermodynamics for the two enantiomers of mosapride differ in the studied mobile phase pH interval. Thermodynamic values, enthalpy and entropy were calculated and showed that at a low mobile phase pH, the enantiomeric resolution was caused by differences in enthalpy between the two enantiomers. However, at a higher mobile phase pH, the chiral discrimination was a result of entropy effects. High correlation was obtained between experimental and predicted separation factors at different mobile phase pHs.  相似文献   

10.
The biological activity of the (+)-S- and (-)-R-enantiomers of niguldipine, of the (-)-S- and (+)-R-enantiomers of felodipine and nitrendipine, and of rac-nisoldipine and rac-nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)-mimetic U-46619 in guinea pig Langendorff hearts, displacement of (+)-[3H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T-tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross-contamination was less than 0.5% for both S- and R-enantiomers of niguldipine and nitrendipine and less than 1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)-(S)-/(-)-(R)-niguldipine, (-)-(S)-/(+)-(R)-felodipine, and (-)-(S)-/(+)-(R)-nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio rac-nisoldipine/rac-nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)-(S)-/(-)-(R)-niguldipine = 45 and 35, (-)-(S)-/(+)-(R)-felodipine = 12 and 13, (-)-(S)-/(+)-(R)-nitrendipine = 8 and 8, and rac-nisoldipine/rac-nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U-46619-induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The goal of this work is to investigate the direct chromatographic separation of the enantiomers of fluoxetine and its active metabolite norfluoxetine. The liquid chromatographic retention behavior of these enantiomers on a β-cyclodextrin bonded-phase column was investigated with respect to mobile phase composition, pH, ionic strength, and solvent selectivity. Relationships were established between these factors and the three most important chromatographic parameters: retention time, resolution, and selectivity. Most of the evidence suggests that the unique selectivity of this column isdue to inclusion complex formation, which provides the physical basis for enantiomeric resolution. After these studies a set of optimum chromatographic conditions was chosen for the simultaneous separation/determination of a mixture of the four enantiomers using fluorescence detector. © 1993 Wiley-Liss, Inc.  相似文献   

12.
In this study, a new Pirkle‐type chiral column stationary phase for resolution of β‐methylphenylethyl amine was described by using activated Sepharose 4B as a matrix, L ‐tyrosine as a spacer arm, and an aromatic amine derivative of L ‐glutamic acid as a ligand. The binding capacities of the stationary phase were determined at different pH values (pH = 6, 7, and 8) using buffer solutions as mobile phase, and enantiomeric excess (ee) was determined by HPLC equipped with chiral column. The ee was found to be 47%. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
M E Van Dort 《Chirality》1999,11(9):684-688
Methods for the direct chiral chromatographic separation of the four stereoisomers of meta-hydroxyphenylpropanolamine (MHPA) on an analytical and preparative scale are described. Separations were carried out on a Crownpak CR (+) chiral column with 113 mM aqueous perchloric acid as the mobile phase. Baseline resolution of the more retained (+)-stereoisomers (1S configuration) and partial resolution of the less retained (-)-stereoisomers (1R configuration) were obtained under these chromatographic conditions. Removal of the bulk of the (1R,2S)-stereoisomer (metaraminol) from the initial crude mixture by fractional crystallization as the (+)-bitartarate salt substantially improved the peak resolution factors (Rs) of the remaining three stereoisomers. Semipreparative chromatographic resolution of the latter isomeric mixture provided milligram quantities of each stereoisomer in >97% enantiomeric excess. Subsequent recrystallization of their bitartarate or fumarate salts gave enantiomeric purities >99%.  相似文献   

14.
Pyriproxyfen is a chiral insecticide, and over 10 metabolites have been identified in the environment. In this work the separations of the enantiomers of pyriproxyfen and its six chiral metabolites were studied by high‐performance liquid chromatography (HPLC). Both normal phase and reverse phase were applied using the chiral columns Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralcel OD‐RH, Chiralpak AY‐H, Chiralpak AD‐H, Chiracel OJ‐H, (R,R)‐Whelk‐O 1, and Lux Cellulose‐3. The effects of the chromatographic parameters such as mobile phase composition and temperature on the separations were investigated and the enantiomers were identified with an optical rotation detector. The enantiomers of these targets could obtain complete separations (resolution factor Rs > 1.5) on Chiralpak IA, Chiralpak IB, Chiralcel OD, Chiralpak AY‐H, or Chiracel OJ‐H under normal conditions. Chiralcel OJ‐H showed the best chiral separation results with n‐hexane as mobile phase and isopropanol (IPA) as modifier. The simultaneous enantiomeric separation of pyriproxyfen and four chiral metabolites was achieved on Chiralcel OJ‐H under optimized condition: n‐hexane/isopropanol = 80/20, 15°C, flow rate of 0.8 ml/min, and UV detection at 230 nm. The enantiomers of pyriproxyfen and the metabolites A , C , and D obtained complete separations on Chiralpak IA, Chiralpak IC, and Lux Cellulose‐3 under reverse phase using acetonitrile/water as the mobile phase. The retention factors (k) and selectivity factors (α) decreased with increasing temperature, and the separations were better under low temperature in most cases. The work is of significance for the investigation of the environmental behaviors of pyriproxyfen on an enantiomeric level. Chirality 28:245–252, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
The direct enantiomeric resolution of albendazole sulfoxide (SOABZ), an anthelmintic drug belonging to the benzimidazole class, is reported on a chiral stationary phase (CSP) synthesized by covalent binding of (S)-N-(3,5-dinitrobenzoyl)tyrosine-O-(2-propen-1-yl) methyl ester on a gamma-mercaptopropyl-silanized silica gel. A comparison with the resolution achieved on commercially available Pirkle-type CSPs obtained from N-(3,5-dinitrobenzoyl) derivatives of (R)-phenyglycine or (S)-phenylalanine is described. Some structurally related chiral sulfoxides including oxfendazole (SOFBZ) are also studied. Optimization of the mobile phase nature and composition is investigated showing that a hexane-dioxane-ethanol ternary mixture affords an almost baseline resolution (Rs = 1.25); however, in this case, albendazole sulfone (SO2ABZ) is eluted between the two sulfoxide enantiomers; accordingly, a hexane-ethanol mobile phase would be preferred for biological samples containing both metabolites. The influence of temperature on the resolution is depicted with a hexane-ethanol mobile phase. Finally, application to the enantiomeric assays of SOABZ in plasmatic extracts of rat, sheep, bovin, and man after oral administration of albendazole (sulfoxidized to SOABZ and SO2ABZ) is reported. Some distortions in the enantiomeric ratios are evidenced depending on the species.  相似文献   

16.
A reversed-phase high-performance liquid chromatographic method to separate meptazinol and its phase I metabolites has been developed using a LiChrosper 100 CN column and a mobile phase of trimethylammoniumacetate buffer (pH 5.5)-acetonitrile-methanol. Quantification of meptazinol and N-desmethylmeptazinol in biological samples was achieved by extraction with organic solvents and chromatographic analysis (detection limit 0.4 and 0.25 μg/ml, respectively). Afterwards the enantiomeric ratio of the two compounds was determined on a Chiral AGP column with a mobile phase of phosphate buffer (pH 7.0)-acetonitrile (α = 1.29 and 1.49, respectively). In-vitro metabolism data after incubation of the racemic compound and the enantiomers with liver supernatant and microsomes of different species are presented. Finally urinary data of two volunteers after oral application of the racemic drug were determined.  相似文献   

17.
20 (R,S)-Ginsenoside-Rg2, an anti-shock agent, is prescribed as a racemate. To analyze simultaneously the enantiomers of 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2 in plasma, a simple and reproducible high-performance liquid chromatographic (HPLC) method has been developed. The enantiomeric separation and determination were successfully achieved using a Diamonsil ODS C18 reversed-phase column (5 microm, 250 mm x 4.6 mm) with an RP18 (5 microm) guard column and a mobile phase of MeOH-aq. 4% H3PO4 (65:35, v/v, pH 5.1) with UV detection at 203 nm. Both enantiomers, 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2, were well separated at 14.5 min and 13.6 min, respectively. The linear ranges of the standard curves were 2.0-250 microg/ml. The intra- and inter-day precision (R.S.D.) were 相似文献   

18.
《Chirality》2017,29(1):19-25
The enantiomeric separation of the enantiomers of three phenylpyrazole pesticides (fipronil, flufiprole, ethiprole) and two fipronil metabolites (amide‐fipronil and acid‐fipronil) were investigated by high‐performance liquid chromatography (HPLC) with a CHIRALPAK® IB chiral column. The mobile phase was n‐ hexane or petroleum ether with 2‐propanol or ethanol as modifier at a flow rate of 1.0 mL/min. The influences of mobile phase composition and column temperature between 15 and 35°C on the separations were studied. All the analytes except ethiprole obtained complete enantiomeric separation after chromatographic condition optimization. Fipronil, flufiprole, amide‐fipronil, and acid‐fipronil obtained complete separation with the best resolution factors of 2.40, 3.40, 1.67, and 16.82, respectively, but ethiprole showed no enantioselectivity under the optimized conditions. In general, n‐ hexane with 2‐propanol gave better separations in most cases. The results showed decreasing temperature and content of modifier in the mobile phase resulted in better separation and longer analysis time as well. The thermodynamic parameters calculated according to linear the Van't Hoff equation indicated the chiral separations in the study were enthalpy‐driven. Fipronil and its two chiral hydrolyzed metabolites obtained baseline separation simultaneously under optimized conditions.  相似文献   

19.
《Chirality》2017,29(6):247-256
The enantioresolution and determination of the enantiomeric purity of 32 new xanthone derivatives, synthesized in enantiomerically pure form, were investigated on (S ,S )‐Whelk‐O1 chiral stationary phase (CSP). Enantioselectivity and resolution (α and RS) with values ranging from 1.41–6.25 and from 1.29–17.20, respectively, were achieved. The elution was in polar organic mode with acetonitrile/methanol (50:50 v/v ) as mobile phase and, generally, the (R )‐enantiomer was the first to elute. The enantiomeric excess (ee ) for all synthesized xanthone derivatives was higher than 99%. All the enantiomeric pairs were enantioseparated, even those without an aromatic moiety linked to the stereogenic center. Computational studies for molecular docking were carried out to perform a qualitative analysis of the enantioresolution and to explore the chiral recognition mechanisms. The in silico results were consistent with the chromatographic parameters and elution orders. The interactions between the CSP and the xanthone derivatives involved in the chromatographic enantioseparation were elucidated.  相似文献   

20.
Lin K  Xu C  Zhou S  Liu W  Gan J 《Chirality》2007,19(3):171-178
Chiral high-performance liquid chromatography (HPLC) is one of the most powerful tools to prepare enantiopure standards of chiral compounds. In this study, the enantiomeric separation of imidazolinone herbicides, i.e., imazethapyr, imazapyr, and imazaquin, was investigated using chiral HPLC. The enantioselectivity of Chiralpak AS, Chiralpak AD, Chiralcel OD, and Chiralcel OJ columns for the three analytes was compared under similar chromatographic conditions. Chiralcel OJ column showed the best chiral resolving capacity among the test columns. The resolved enantiomers were distinguished by their signs of circular dichroism detected at 275 nm and their structures confirmed with LC-mass spectrometric analysis. Factors affecting the chiral separation of imidazolinones on Chiralcel OJ column were characterized. Ethanol acted as a better polar modifier than the other alcohols including 2-propanol, 1-butanol, and 1-pentanol. Although the acidic modifier in the mobile phase did not influence chiral recognition, it was necessary for reducing the retention time of enantiomers and suppressing their peak tailing. Thermodynamic evaluation suggests that enantiomeric separation of imidazolinones on Chiralcel OJ column is an enthalpy-driven process from 10 to 40 degrees C. This study also shows that small amounts of pure enantiomers of imidazolinones may be obtained by using the analytical chiral HPLC approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号