首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells by two principal routes of signaling: NCAM/Fyn and NCAM/fibroblast growth factor receptor (FGFR), respectively. Previous studies have shown that activation of mitogen-activated protein kinases is a pivotal point of convergence in NCAM signaling, but the mechanisms behind this activation are not clear. Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM activates FGFR signaling in a manner distinct from FGF2 stimulation, and regulates ShcA phosphorylation by the concerted efforts of the NCAM/FGFR as well as the NCAM/Fyn signaling pathway.  相似文献   

2.
3.
Neural recognition molecules such as the neural cell adhesion molecule (NCAM) have been implicated in synaptic plasticity, including long-term potentiation (LTP), sensitization, and learning and memory. The major isoform of NCAM carrying the longest cytoplasmic domain of all NCAM isoforms (NCAM180) is predominantly localized in postsynaptic membranes and postsynaptic densities of hippocampal neurons, with only a proportion of synapses carrying detectable levels of NCAM180. To investigate whether this differential expression of NCAM180 may correlate with distinct states of synaptic activity, LTP was induced by high-frequency stimulation of the perforant path and the percentage of NCAM180 immunopositive spine synapses determined in the outer third of the dentate molecular layer of the dentate gyrus by immunoelectron microscopy. Twenty-four hours following induction of LTP by high-frequency stimulation, the percentage of spine synapses expressing NCAM180 increases from 37% (passive control) to 70%. This increase was inhibited by the noncompetitive N-methyl-D -aspartate receptor antagonist MK801. Following repeated LTP induction at 10 consecutive days with one tetanization each day, 60% of all spine synapses were NCAM180 immunoreactive. Compared to passive control animals, the percentage of NCAM180 expressing synapses in low-frequency stimulated animals decreased from 37% to 28%. Spine synapses in the inner part of the dentate molecular layer not contacted by the afferents of the perforant path did not change the percentage of NCAM180-expressing synapses. The results obtained by the postembedding immunogold staining technique confirmed the difference in NCAM180 expression of spine synapses between passive control and potentiated animals. These observations suggest a role for NCAM180 in synaptic remodeling accompanying LTP. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 359–372, 1998  相似文献   

4.
The aquatic oligochaete, Lumbriculus variegatus (Lumbriculidae), undergoes a rapid regenerative transformation of its neural circuits following body fragmentation. This type of nervous system plasticity, called neural morphallaxis, involves the remodeling of the giant fiber pathways that mediate rapid head and tail withdrawal behaviors. Extra- and intracellular electrophysiological recordings demonstrated that changes in cellular properties and synaptic connections underlie neurobehavioral plasticity during morphallaxis. Sensory-to-giant interneuron connections, undetectable prior to body injury, emerged within hours of segment amputation. The appearance of functional synaptic transmission was followed by interneuron activation, coupling of giant fiber spiking to motor outputs and overt segmental shortening. The onset of morphallactic plasticity varied along the body axis and emerged more rapidly in segments closer to regions of sensory field overlap between the two giant fiber pathways. The medial and lateral giant fibers were simultaneously activated during a transient phase of network remodeling. Thus, synaptic plasticity at sensory-to-giant interneuron connections mediates escape circuit morphallaxis in this regenerating annelid worm.  相似文献   

5.
The neural cell adhesion molecule (NCAM) participates in adhesion and neuritic outgrowth during nervous system development. In the adult brain, NCAM is considered to be involved in neuronal sprouting and synaptic remodeling. the NCAM concentration of brain tissue has proved to be a useful marker of these processes, especially when viewed in comparison with the concentration of a marker of mature synapses, e.g. D3-protein (SNAP-25) or synaptophysin. The present review focusses on studies of adult brain in which NCAM concentration estimates and NCAM/D3 ratios have been used to evaluate the rate of synaptic remodeling in brain damage and degenerative diseases.Special issue dedicated to Dr. Robert Balázs.  相似文献   

6.
The neural cell adhesion molecule (NCAM) can bind to and activate fibroblast growth factor receptor 1 (FGFR1). However, there are four major FGFR isoforms (FGFR1-FGFR4), and it is not known whether NCAM also interacts directly with the other three FGFR isoforms. In this study, we show by surface plasmon resonance analysis that NCAM can bind to FGFR2 with an affinity similar to that for the NCAM-FGFR1 interaction. However, the kinetic parameters for the NCAM-FGFR2 binding are different from those of the NCAM-FGFR1 binding. Both receptors were shown to cycle relatively fast between the NCAM bound and unbound states, although FGFR2 cycling was clearly faster (13 times) than the FGFR1 cycling. Moreover, ATP was more effective in inhibiting the binding of NCAM to FGFR1 than to FGFR2, indicating that the binding sites in NCAM for the two receptors are similar, but not identical.  相似文献   

7.
Activation of the fibroblast growth factor receptor (FGFR) by neural cell adhesion molecule (NCAM) is essential for NCAM-mediated neurite outgrowth. Previous peptide studies have identified two regions in the fibronectin type 3 (FN3)-like domains of NCAM as being important for these activities. Here we report the crystal structure of the NCAM FN3 domain tandem, which reveals an acutely bent domain arrangement. Mutation of a non-conserved surface residue (M610R) led to a second crystal form showing a substantially different conformation. Thus, the FN3 domain linker is highly flexible, suggesting that it corresponds to the hinge seen in electron micrographs of NCAM. The two putative FGFR1-binding segments, one in each NCAM FN3 domain, are situated close to the domain interface. They form a contiguous patch in the more severely bent conformation but become separated upon straightening of the FN3 tandem, suggesting that conformational changes within NCAM may modulate FGFR1 activation. Surface plasmon resonance experiments demonstrated only a very weak interaction between the NCAM FN3 tandem and soluble FGFR1 proteins expressed in mammalian cells (dissociation constant > 100 μM). Thus, the NCAM-FGFR1 interaction at the cell surface is likely to depend upon avidity effects due to receptor clustering.  相似文献   

8.
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)—the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite.  相似文献   

9.
神经胶质细胞与突触可塑性研究新进展   总被引:2,自引:0,他引:2  
Xie YF 《生理科学进展》2007,38(2):111-115
突触的可塑性是研究学习与记忆的基础,很长时间以来人们对突触的可塑性研究主要集中在神经元和突触上;而胶质细胞的作用较少受到注意。最近的研究发现胶质细胞也参与突触的构成并影响突触的活动。研究表明中枢神经系统中的胶质细胞包括星形胶质细胞、小胶质细胞和少突胶质细胞可分别通过谷氨酸、丝氨酸、甘氨酸、ATP等信号调节突触的可塑性,从而为突触的可塑性研究提供了新的思路和方向,并有助于阐明突触的发生以及学习与记忆的机制。  相似文献   

10.
突触可塑性是学习记忆的基础,其分子机制是理解记忆形成和维持的关键,也为神经退行性疾病的预防与治疗提供了新靶点。肌球蛋白超家族广泛存在于人体各种组织细胞中,主要分为常规肌球蛋白和非常规肌球蛋白。越来越多的研究发现,非常规肌球蛋白参与了许多重要的生命活动,尤其是在神经系统对突触可塑性的调节中,起到了十分重要的作用。  相似文献   

11.
Endocannabinoids (eCBs) act as modulators of synaptic transmission through activation of a number of receptors, including, but not limited to, cannabinoid receptor 1 (CB1). eCBs share CB1 receptors as a common target with Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in marijuana. Although THC has been used for recreational and medicinal purposes for thousands of years, little was known about its effects at the cellular level or on neuronal circuits. Identification of CB1 receptors and the subsequent development of its specific ligands has therefore enhanced our ability to study and bring together a substantial amount of knowledge regarding how marijuana and eCBs modify interneuronal communication. To date, the eCB system, composed of cannabinoid receptors, ligands and the relevant enzymes, is recognized as the best-described retrograde signalling system in the brain. Its impact on synaptic transmission is widespread and more diverse than initially thought. The aim of this review is to succinctly present the most common forms of eCB-mediated modulation of synaptic transmission, while also illustrating the multiplicity of effects resulting from specializations of this signalling system at the circuital level.  相似文献   

12.
神经元长时程突触可塑性是学习和记忆的基础,神经元长时程突触可塑性的维持依赖于基因的转录和蛋白质合成.然而,这些转录产物和新合成的蛋白质是如何从胞体运输到突触点,还不甚清楚.近年来的研究显示,当长时程突触可塑性发生时,被激活的突触能通过建立突触标记(synaptic tag)来识别、捕捉和利用其所需要的基因产物,以维持突触可塑性的长时程变化.这一过程或现象被称为突触标识(synaptic tagging).本文就近年来突触标识的研究进展作一概述.  相似文献   

13.
Activation of the calcium-dependent protease calpain has been proposed to be a key step in synaptic plasticity in the hippocampus. However, the exact pathway through which calpain mediates or modulates changes in synaptic function remains to be clarified. Here we report that glutamate receptor-interacting protein (GRIP) is a substrate of calpain, as calpain-mediated GRIP degradation was demonstrated using three different approaches: (i) purified calpain I digestion of synaptic membranes, (ii) calcium treatment of frozen-thawed brain sections, and (iii) NMDA-stimulated organotypic hippocampal slice cultures. More importantly, calpain activation resulted in the disruption of GRIP binding to the GluR2 subunit of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors. Because GRIP has been proposed to function as an AMPA receptor-targeting and synaptic-stabilizing protein, as well as a synaptic-organizing molecule, calpain-mediated degradation of GRIP and disruption of AMPA receptor anchoring are likely to play important roles in the structural and functional reorganization accompanying synaptic modifications in long-term potentiation and long-term depression.  相似文献   

14.
Epileptogenesis is a potential process. Mossy fibre sprouting (MFS) and synaptic plasticity promote epileptogenesis. Overexpression of repulsive guidance molecule a (RGMa) prevents epileptogenesis by inhibiting MFS. However, other aspects underlying the RGMa regulatory process of epileptogenesis have not been elucidated. We studied whether RGMa could be modulated by microRNAs and regulated RhoA in epileptogenesis. Using microRNA databases, we selected four miRNAs as potential candidates. We further experimentally confirmed miR‐20a‐5p as a RGMa upstream regulator. Then, in vitro, by manipulating miR‐20a‐5p and RGMa, we investigated the regulatory relationship between miR‐20a‐5p, RGMa and RhoA, and the effects of this pathway on neuronal morphology. Finally, in the epilepsy animal model, we determined whether the miR‐20a‐5p‐RGMa‐RhoA pathway influenced MFS and synaptic plasticity and then modified epileptogenesis. Our results showed that miR‐20a‐5p regulated RGMa and that RGMa regulated RhoA in vitro. Furthermore, in primary hippocampal neurons, the miR‐20a‐5p‐RGMa‐RhoA pathway regulated axonal growth and neuronal branching; in the PTZ‐induced epilepsy model, silencing miR‐20a‐5p prevented epileptogenesis through RGMa‐RhoA‐mediated synaptic plasticity but did not change MFS. Overall, we concluded that silencing miR‐20a‐5p inhibits axonal growth and neuronal branching and prevents epileptogenesis through RGMa‐RhoA‐mediated synaptic plasticity in the PTZ‐induced epilepsy model, thereby providing a possible strategy to prevent epileptogenesis.  相似文献   

15.
Aplysia neurons express several splice variants of apCAM, a member of the Ig superfamily of cell adhesion molecules. The major transmembrane isoform is endocytosed in sensory neurons (SNs) during the early phases of long‐term facilitation (LTF) of SN synapses evoked by serotonin (5‐HT) or in the motor neuron L7 during the early phases of long‐term depression (LTD) of SN synapses evoked by Phe‐Met‐Arg‐Phe‐amide (FMRFa). We used single cell RT‐PCR to evaluate whether expression of mRNAs encoding for different apCAM isoforms in SNs and L7 is regulated during LTF produced by 5‐HT, and LTD produced by FMRFa. Single SNs and L7s express mRNAs encoding for all major isoforms, but the proportion of each isoform expressed differs for the two cells. SN expresses more mRNA encoding for GPI‐linked isoforms, while L7 expresses more mRNA encoding for the major transmembrane isoform. The neuromodulators produced significant changes in the proportional levels of mRNAs encoding for specific apCAM isoforms during the first 4 h after treatments without affecting overall levels of apCAM mRNA. 5‐HT evoked changes that exaggerated cell‐specific differences in isoform expression. FMRFa evoked changes that reduced cell‐specific differences in isoform expression. The effects of the neuromodulators on apCAM mRNA expression were not detected when cells were cultured alone or when SNs were cocultured with another motor cell that failed to induce synapse formation (L11). The results suggest that rapid cell‐specific regulation of splice variant expression may contribute to different forms of long‐term synaptic plasticity. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 152–161, 2000  相似文献   

16.
Transmembrane forms of neural cell adhesion molecule (NCAM140, NCAM1801) are key regulators of neuronal development. The extracellular domain of NCAM can occur as a soluble protein in normal brain, and its levels are elevated in neuropsychiatric disorders, such as schizophrenia; however the mechanism of ectodomain release is obscure. Ectodomain shedding of NCAM140, releasing a fragment of 115 kD, was found to be induced in NCAM‐transfected L‐fibroblasts by the tyrosine phosphatase inhibitor pervanadate, but not phorbol esters. Pervanadate‐induced shedding was mediated by a disintegrin metalloprotease (ADAM), regulated by ERK1/2 MAP kinase. In primary cortical neurons, NCAM was shed at high levels, and the metalloprotease inhibitor GM6001 significantly increased NCAM‐dependent neurite branching and outgrowth. Moreover, NCAM‐dependent neurite outgrowth and branching were inhibited in neurons isolated from a transgenic mouse model of NCAM shedding. These results suggest that regulated metalloprotease‐induced ectodomain shedding of NCAM down‐regulates neurite branching and neurite outgrowth. Thus, increased levels of soluble NCAM in schizophrenic brain have the potential to impair neuronal connectivity. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

17.
Hypoxia in prostate tumours has been associated with disease progression and metastasis. MicroRNAs are short noncoding RNA molecules that are important in several cell processes, but their role in hypoxic signalling is still poorly understood. miR-210 has been linked with hypoxic mechanisms, but this relationship has been poorly characterised in prostate cancer. In this report, the link between hypoxia and miR-210 in prostate cancer cells is investigated. Polymerase chain reaction analysis demonstrates that miR-210 is induced by hypoxia in prostate cancer cells using in vitro cell models and an in vivo prostate tumour xenograft model. Analysis of The Cancer Genome Atlas prostate biopsy datasets shows that miR-210 is significantly correlated with Gleason grade and other clinical markers of prostate cancer progression. Neural cell adhesion molecule (NCAM) is identified as a target of miR-210, providing a biological mechanism whereby hypoxia-induced miR-210 expression can contribute to prostate cancer. This study provides evidence that miR-210 is an important regulator of cell response to hypoxic stress and proposes that its regulation of NCAM may play an important role in the pathogenesis of prostate cancer.  相似文献   

18.
叶玉如 《生命科学》2008,20(5):709-711
突触可塑性对于脑发育过程中的神经环路重构以及学习记忆等脑的高级功能是非常重要的。许多受体酪氨酸激酶家族成员,包括TrkB、ErbB和Eph在神经连接的建立和重构过程中起到核心作用。比如,突触后EphB依赖的信号会导致树突棘的产生和神经递质受体的聚集,而ephrinA引起的EphA4激活可以导致树突棘的回缩。但是,目前对EphA4依赖的树突棘重组和对神经递质受体的调节背后的机制还知之甚少。本文将集中探讨EphA4及其下游的信号通路在神经肌肉接头和中枢神经的突触中,对神经递质受体的调节功能。  相似文献   

19.
Direction selectivity (DS) of simple cells in the primary visual cortex was recently suggested to arise from short-term synaptic depression in thalamocortical afferents (Chance F, Nelson S, Abbott L (1998), J. Neuroscience 18(12): 4785–4799). In the model, two groups of afferents with spatially displaced receptive fields project through either depressing and non-depressing synapses onto the V1 cell. The degree of synaptic depression determines the temporal phase advance of the response to drifting gratings. We show that the spatial displacement and the appropriate degree of synaptic depression required for DS can develop within an unbiased input scenario by means of temporally asymmetric spike-timing dependent plasticity (STDP) which modifies both the synaptic strength and the degree of synaptic depression. Moving stimuli of random velocities and directions break any initial receptive field symmetry and produce DS. Frequency tuning curves and subthreshold membrane potentials akin to those measured for non-directional simple cells are thereby changed into those measured for directional cells. If STDP is such that down-regulation dominates up-regulation the overall synaptic strength adapts in a self-organizing way such that eventually the postsynaptic response for the non-preferred direction becomes subthreshold. To prevent unlearning of the acquired DS by randomly changing stimulus directions an additional learning threshold is necessary. To further protect the development of the simple cell properties against noise in the stimulus, asynchronous and irregular synaptic inputs are required.  相似文献   

20.
王欣  关锋 《遗传》2014,36(8):739-746
神经粘附分子(Neural cell adhesion molecule, NCAM)是免疫球蛋白家族中的一员,在细胞粘附和细胞通信,尤其是神经系统的生长和塑型中起重要作用。而多聚唾液酸(Polysialic acid, PSA)则是控制NCAM粘附能力形成与神经系统分化的重要因素。研究发现,多种肿瘤细胞中存在PSA以及多聚唾液酸化的神经粘附分子(PSA-NCAM)再表达的现象,预示PSA及PSA-NCAM与多种肿瘤细胞的粘附性、迁移性和侵袭性等特性密切相关,影响肿瘤细胞的生长与转移,并通过介导多种细胞信号通路影响癌症的发生与发展。文章综述了NCAM以及PSA对癌症的发生与发展、预后的作用及其功能对细胞下游信号传导的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号