首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome segregation ensures the equal partitioning of chromosomes at mitosis. However, long chromosome arms may pose a problem for complete sister chromatid separation. In this paper we report on the analysis of cell division in primary cells from field vole Microtus agrestis, a species with 52 chromosomes including two giant sex chromosomes. Dual chromosome painting with probes specific for the X and the Y chromosomes showed that these long chromosomes are prone to mis-segregate, producing DNA bridges between daughter nuclei and micronuclei. Analysis of mitotic cells with incomplete chromatid separation showed that reassembly of the nuclear membrane, deposition of INner CENtromere Protein (INCENP)/Aurora B to the spindle midzone and furrow formation occur while the two groups of daughter chromosomes are still connected by sex chromosome arms. Late cytokinetic processes are not efficiently inhibited by the incomplete segregation as in a significant number of cell divisions cytoplasmic abscission proceeds while Aurora B is at the midbody. Live-cell imaging during late mitotic stages also revealed abnormal cell division with persistent sister chromatid connections. We conclude that late mitotic regulatory events do not monitor incomplete sister chromatid separation of the large X and Y chromosomes of Microtus agrestis, leading to defective segregation of these chromosomes. These findings suggest a limit in chromosome arm length for efficient chromosome transmission through mitosis.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
3.
Mitotic HeLa cells were treated with different concentrations of okadaic acid inhibiting phosphatase 2A activity alone or in addition to phosphatase 1 activity. Phosphatase 2A inhibition alone had no visible effect on mitosis, but inhibition of both phosphatase 1 and 2A produced mitotic abnormalities, including inhibition of anaphase mimicking the effect of colchicine. Recovery experiments in okadaic acid-free medium showed formation of diplochromosomes, indicating a failure of sister chromatid separation in the treated mitotic cells. The universality of the phosphatase 1 requirement in sister chromatid separation is discussed.  相似文献   

4.
Dual inhibition of sister chromatid separation at metaphase.   总被引:29,自引:0,他引:29  
O Stemmann  H Zou  S A Gerber  S P Gygi  M W Kirschner 《Cell》2001,107(6):715-726
Separation of sister chromatids in anaphase is mediated by separase, an endopeptidase that cleaves the chromosomal cohesin SCC1. Separase is inhibited by securin, which is degraded at the metaphase-anaphase transition. Using Xenopus egg extracts, we demonstrate that high CDC2 activity inhibits anaphase but not securin degradation. We show that separase is kept inactive under these conditions by a mechanism independent of binding to securin. Mutation of a single phosphorylation site on separase relieves the inhibition and rescues chromatid separation in extracts with high CDC2 activity. Using quantitative mass spectrometry, we show that, in intact cells, there is complete phosphorylation of this site in metaphase and significant dephosphorylation in anaphase. We propose that separase activation at the metaphase-anaphase transition requires the removal of both securin and an inhibitory phosphate.  相似文献   

5.
PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and chromatin-immunoprecipitation to demonstrate that PICH associates with centromeric chromatin during anaphase. Furthermore, by careful analysis of PICH-positive anaphase threads through FISH as well as bromo-deoxyurdine and CREST labeling, we strengthen the evidence that these threads comprise mainly alphoid centromere deoxyribonucleic acid. Finally, by timing the addition of ICRF-193 (a specific inhibitor of topoisomerase-II alpha) to cells synchronized in anaphase, we demonstrate that topoisomerase activity is required specifically to resolve PICH-positive threads during anaphase (as opposed to being required to prevent the formation of such threads during earlier cell cycle stages). These data indicate that PICH associates with centromeres during anaphase and that most PICH-positive threads evolve from inner centromeres as these stretch in response to tension. Moreover, they show that topoisomerase activity is required during anaphase for the resolution of PICH-positive threads, implying that the complete separation of sister chromatids occurs later than previously assumed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Wang and Schwarzbraun both contributed equally to this study.  相似文献   

6.
Defining the mechanisms of chromosomal cohesion and dissolution of the cohesin complex from chromatids is important for understanding the chromosomal missegregation seen in many tumor cells. Here we report the identification of a novel cohesin-resolving protease and describe its role in chromosomal segregation. Sister chromatids are held together by cohesin, a multiprotein ring-like complex comprised of Rad21, Smc1, Smc3, and SA2 (or SA1). Cohesin is known to be removed from vertebrate chromosomes by two distinct mechanisms, namely, the prophase and anaphase pathways. First, PLK1-mediated phosphorylation of SA2 in prophase leads to release of cohesin from chromosome arms, leaving behind centromeric cohesins that continue to hold the sisters together. Then, at the onset of anaphase, activated separase cleaves the centromeric cohesin Rad21, thereby opening the cohesin ring and allowing the sister chromatids to separate. We report here that the calcium-dependent cysteine endopeptidase calpain-1 is a Rad21 peptidase and normally localizes to the interphase nuclei and chromatin. Calpain-1 cleaves Rad21 at L192, in a calcium-dependent manner. We further show that Rad21 cleavage by calpain-1 promotes separation of chromosome arms, which coincides with a calcium-induced partial loss of cohesin at several chromosomal loci. Engineered cleavage of Rad21 at the calpain-cleavable site without activation of calpain-1 can lead to a loss of sister chromatid cohesion. Collectively, our work reveals a novel function of calpain-1 and describes an additional pathway for sister chromatid separation in humans.  相似文献   

7.
We have produced metaphase spindles and induced them to enter anaphase in vitro. Sperm nuclei were added to frog egg extracts, allowed to replicate their DNA, and driven into metaphase by the addition of cytoplasm containing active maturation promoting factor (MPF) and cytostatic factor (CSF), an activity that stabilizes MPF. Addition of calcium induces the inactivation of MPF, sister chromatid separation and anaphase chromosome movement. DNA topoisomerase II inhibitors prevent chromosome segregation at anaphase, demonstrating that the chromatids are catenated at metaphase and that decatenation occurs at the start of anaphase. Topoisomerase II activity towards exogenous substrates does not increase at the metaphase to anaphase transition, showing that chromosome separation at anaphase is not triggered by a bulk activation of topoisomerase II.  相似文献   

8.
The maintenance of sister chromatid cohesion from S phase to the onset of anaphase relies on a small but evolutionarily conserved protein called Sororin. Sororin is a phosphoprotein and its dynamic localization and function are regulated by protein kinases, such as Cdk1/cyclin B and Erk2. The association of Sororin with chromatin requires cohesin to be preloaded to chromatin and modification of Smc3 during DNA replication. Sororin antagonizes the function of Wapl in cohesin releasing from S to G2 phase and promotes cohesin release from sister chromatid arms in prophase via interaction with Plk1. This review focuses on progress of the identification and regulation of Sororin during cell cycle; role of post-translational modification on Sororin function; role of Sororin in the maintenance and resolution of sister chromatid cohesion; and finally discusses Sororin’s emerging role in cancer and the potential issues that need be addressed in the future.  相似文献   

9.
The maintenance of sister chromatid cohesion from S phase to the onset of anaphase relies on a small but evolutionarily conserved protein called Sororin. Sororin is a phosphoprotein and its dynamic localization and function are regulated by protein kinases, such as Cdk1/cyclin B and Erk2. The association of Sororin with chromatin requires cohesin to be preloaded to chromatin and modification of Smc3 during DNA replication. Sororin antagonizes the function of Wapl in cohesin releasing from S to G2 phase and promotes cohesin release from sister chromatid arms in prophase via interaction with Plk1. This review focuses on progress of the identification and regulation of Sororin during cell cycle; role of post-translational modification on Sororin function; role of Sororin in the maintenance and resolution of sister chromatid cohesion; and finally discusses Sororin’s emerging role in cancer and the potential issues that need be addressed in the future.  相似文献   

10.
Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles.  相似文献   

11.
Biggins S  Bhalla N  Chang A  Smith DL  Murray AW 《Genetics》2001,159(2):453-470
Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair alpha-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.  相似文献   

12.
An in vivo system for differentially stained sister chromatids by incorporating 5' Bromo 2' deoxyuridine at two consecutive round of DNA replication has been developed in C. punctatus. The base line developed frequency of sister chromatid exchanges (SCEs) was found to be 0.038 SCE/chromosome. This low baseline frequency of SCEs could be useful in detecting genotoxicity of pollutants in aquatic medium.  相似文献   

13.
We have studied two aspects of the process of sister chromatid separation in the Drosophila melanogaster neuroblasts. First, we analyzed the requirement of a functional spindle for sister chromatid separation to take place using microtubule depolymerizing drugs such as colchicine or a reversible analogue (MTC). Incubation of this tissue in colchicine causes the cells to block irreversibly at metaphase and no significant levels of sister chromatid separation were observed even after long periods of incubation. Exposure of neuroblasts to MTC also causes cells to block at metaphase, but after reversion most of the cells enter anaphase and are thus able to complete sister chromatid separation. These results imply that a functional spindle is required for sister chromatid separation. Second, we studied the role of heterochromatin during chromatid pairing and subsequent separation in chromosomes which carry either one or two extra pieces of heterochromatin. The results indicate that sister chromatids establish strong pairing along the translocated heterochromatin. During the early stages of anaphase, these chromosomes separate first the centromeric region and later the regions bearing extra heterochromatin. These results indicate that constitutive heterochromatin plays an important role for sister chromatid pairing and might be involved in the process of separation.  相似文献   

14.
He X  Asthana S  Sorger PK 《Cell》2000,101(7):763-775
The accurate segregation of chromosomes at mitosis requires that all pairs of chromatids bind correctly to microtubules prior to the dissolution of sister cohesion and the initiation of anaphase. By analyzing the motion of GFP-tagged S. cerevisiae chromosomes, we show that kinetochore-microtubule attachments impose sufficient tension on sisters during prometaphase to transiently separate centromeric chromatin toward opposite sides of the spindle. Transient separations of 2-10 min duration occur in the absence of cohesin proteolysis, are characterized by independent motion of the sisters along the spindle, and are followed by the apparent reestablishment of sister linkages. The existence of transient sister separation in yeast explains the unusual bilobed localization of kinetochore proteins and supports an alternative model for spindle structure. By analogy with animal cells, we propose that yeast centromeric chromatin acts as a tensiometer.  相似文献   

15.
Induction of differentially stained sister chromatids at G2/M and determination of baseline sister chromatid exchanges (SCEs) in ascites form of mouse sarcoma 180 cell line have been done by in vivo incorporation of 5-bromodeoxyuridine (BrdU) for two consecutive DNA replication cycles. The baseline SCE frequency is 6.24 at log phase of tumour growth.  相似文献   

16.
17.
Summary Log-linear models are fitted to sister chromatid exchange (SCE) scores in order to test the significance of the differences in SCE scores observed between individuals or between experimental treatments. The analysis is performed at the level of chromosome groups. In each single test all measurements from all chromosome groups, both from the control and from the experimental sets, are utilized. By proceeding in this way full use is made of all the available information on the SCE scores at the level of chromosome groups and the shortcomings of the classical Student-t and chi-square tests are avoided.This work was supported by a grant Geconcerteerde Acties from the Belgian Government.  相似文献   

18.
The mechanism of sister chromatid cohesion   总被引:15,自引:0,他引:15  
Each of our cells inherit their genetic information in the form of chromosomes from a mother cell. In order that we obtain the full genetic complement, cells need to ensure that replicated chromosomes are accurately split and distributed during cell division. Mistakes in this process lead to aneuploidies, cells with supernumerous or missing chromosomes. Most aneuploid human embryos are not viable, and if they are, they develop severe birth defects. Aneuploidies later in human life are frequently found associated with the development of malignant cancer. DNA replication during S-phase is linked to segregation of the sister copies in mitosis by sister chromatid cohesion. A chromosomal protein complex, cohesin, holds replicated sister DNA strands together after their synthesis. This allows pairs of replication products to be recognised by the spindle apparatus in mitosis for segregation into opposite direction. At anaphase onset, cohesin is destroyed by a site-specific protease, separase. Here I review what we have learned about the molecular mechanism of sister chromatid cohesion. Cohesin forms a large proteinaceous ring that may hold sister chromatids by encircling and topological trapping. To understand how cohesin links newly synthesised replication products, biochemical assays to study the enzymology of cohesin will be required.  相似文献   

19.
The origin of diplochromosomes has been traced in multinucleate rat kangaroo cells (PtK1) obtained after colcemid treatment. In these cells the diplochromosomes were shown to originate from restitution nuclei, indicating that they were formed due to the omission or failure of sister chromatid separation and not due to endoreduplication. In this context the mechanism of sister chromatid separation has been discussed. The independence of this mitotic event from other associated processes, such as chromosome condensation, nuclear envelope breakdown or spindle formation has been stressed.  相似文献   

20.
The regulation of sister chromatid cohesion   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号