首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effects of sinusoidal electromagnetic fields (EMF) on ion transport (Ca2+, Na+, K+, and H+) in several cell types (red blood cells, thymocytes, Ehrlich ascites tumor cells, and HL60 and U937 human leukemia cells). The effects on the uptake of radioactive tracers as well as on the cytosolic Ca2+ concentration ([Ca2+]i), the intracellular pH (pHi), and the transmembrane potentsial (TMP) were studied. Exposure to EMF at 50 Hz and 100–2000 μT (rms) had no significant effects on any of these parameters. Exposure to EMF of 20–1200 μT (rms) at the estimated cyclotron magnetic resonance frequencies for the respective ions had no significant effects except for a 12–32% increase of the uptake of 42K within a window at 14.5–15.5 Hz and 100–200 μT (rms), which was found in U937 and Ehrlich cells but not in the other cell types. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Calcium-ion uptake by normal and leukemia lymphocytes increased during a 30-min exposure to a 13.6 Hz, sinusoidal magnetic field at 20 microT peak. The time-varying field was horizontal and parallel to a 16.5 microT component of the ambient static magnetic field. The uptake of 45Ca2+ increased 102% in a line of murine, cytotoxic T-lymphocytes (C57B1/6-derived CTLL-1), increased 126% in freshly-isolated spleen lymphocytes (C57B1/6 mice), and increased 75% in a line of lymphoma cells (C57B1/6-derived EL4). In contrast, there was no effect when the same field was applied for 30 min immediately before--as opposed to during--incorporation of calcium ions. When spleen lymphocytes were exposed during incubation with 45Ca2+ to a 60 Hz magnetic field at 20 microT peak, a small but statistically significant increase (37%) in uptake of the labeled ions occurred. These results indicate that weak, alternating magnetic fields might affect calcium-dependent functions of normal and leukemic lymphocytes.  相似文献   

3.
4.
The hypothesis that specific combinations of DC and low frequency AC magnetic fields at so-called cyclotron-resonance conditions could affect the transport of ions through ion channels, or alter the kinetics of ion channels (opening and closing rates), has been tested. As a model system, the ion channels formed by gramicidin A incorporated in lipid bilayer membranes were studied. No significant changes in channel conductance, average lifetime, or formation rate as a function of applied fields could be detected over a wide range of frequencies and field strengths. Experiments were carried out to measure the time-resolved single-channel events and the average conductances of many-channel events in the presence of K+ and H+ ions. The channel blocking effect of Ca++ was also studied. © 1993 Wiley-Liss. Inc.  相似文献   

5.
An elementary model consisting of one charged particle in a viscous medium exposed to weak ac-dc low-frequency magnetic fields is analyzed to identify and explain the fundamental characteristics of the physical mechanisms that result in a resonance response, which is similar to the familiar cyclotron resonance. The model predicts both frequency and amplitude windows, which are explained in terms of synchronization of the particle with electric fields. Although extrapolation of model results to biological systems is limited by the elementary nature of the model, the model results indicate that observed resonant responses by others of biological systems to ac-dc magnetic fields are probably not due to resonant response of ions in solution, since the model predicts that no resonant response is possible unless the viscous damping is very low, many orders of magnitude lower than the viscous damping of ions in solution.  相似文献   

6.
Kinetics of channelized membrane ions in magnetic fields   总被引:5,自引:0,他引:5  
The cyclotron resonance model for channel ion transport in weak magnetic fields is extended to include damping losses. The conductivity tensor is obtained for different electric field configurations, including the circuital field E phi normal to the channel axis. The conductivity behavior close to the cyclotron resonance frequency omega c is compared to existing Ca2+-efflux data in the literature. A collision time of .023 s results from this comparison under the assumption that K+ ions are transiting in a 0.35 G field. We estimate a mean kinetic energy of 3.5 eV for this ion at resonance. This model leads to discrete modes of vibration (eigenfrequencies) in the ion-lattice interaction, such that omega n = n omega c. The presence of such harmonics is compatible with recent results by Blackman et al. [1985b] and McLeod et al. [1986] with the interesting exception that even modes do not appear in their observations, whereas the present model has no restriction on n. This harmonic formalism is also consistent with another reported phenomenon, that of quantized multiple conductances in single patch-clamped channels.  相似文献   

7.
The effect of exposure of single rat pituitary cells to 50 Hz sine wave magnetic fields of various strengths on the intracellular free Ca2+ concentration ([Ca2+]i) was studied by using dual-emission microfluorimetry, using indo-1 as probe. A 30 min exposure of the cells to vertical 50 μT peak magnetic field triggered a long-lasting increase in [Ca2+]i from a basal value of about 185 ± 4 nM to 326 ± 41 nM (S.E.; n = 150). The vertical and horizontal components of the static magnetic field were 57 and 15 μT, respectively. The 50 Hz ambient magnetic field was always below 0.1 μT rms. The effect was observed both at 25 ± 2 °C and at 37 ± 2 °C. Responsive cells, for which [Ca2+]i rose to values above 309 nM, were identified as lactotrophs and represented 29% of the total pituitaries. [Ca2+]i increase, for the most part, was due to Ca2+ influx through voltage-dependent dihydropiridine-sensitive calcium channels inhibited by PN 200-110. However, neither Ca2+ channel blockers nor removal of Ca2+ from the external medium during exposure completely prevented the field-induced [Ca2+]i increase. Additional experiments using an MTT colorimetric assay showed that alteration of Ca2+ homeostasis of lactotrophs was associated with impairment of some mitochondrial processes. © Wiley-Liss, Inc.  相似文献   

8.
Primary-culture bone cells were exposed to ion-resonance (IR) magnetic fields tuned to Ca2+. Cytosolic calcium concentration, [Ca2+]c, was measured by using fura-2 during field exposure. The fields investigated were 20 μT static + 40 μT p-p at either 15.3 or 76.6 Hz, and 0.13 mT static + either 0.5 or 1.0 mT p-p at 100 Hz. Other parameters included field orientation, culture age (2 or 5 days after plating), and the presence of serum (0 or 2%) during exposure. Total experiment time was 29.5 min: The field was applied after 2 min, and bradykinin was added as an agonist control after 22 min. The data were quantified on a single-cell basis during the 2–22 min exposure period in terms of the magnitude of the largest occurring [Ca2+]c spike normalized to local baseline. Field-exposed and control groups were characterized in terms of the percent of cells exhibiting spike magnitudes above thresholds of 100 or 66% over baseline and were compared by using Fisher's exact test. Without serum, there was little evidence that IR magnetic fields altered [Ca2+]c. However, in the presence of 2% serum, 3 of the 16 experiments exhibited significant effects at the 100% threshold. Reducing this threshold to 66% resulted in five experiments exhibiting significant effects. Most strikingly, in all of these cases, the field acted to enhance [Ca2+]c activity as opposed to suppressing [Ca2+]c activity. These findings suggest a role for serum or for constituents within serum in mediating the effects of IR magnetic fields on cells and may provide a resolution pathway to the dilemma imposed by theoretical arguments regarding the possibility of such phenomena. Possible roles of serum and future studies are discussed. Bioelectromagnetics 18:203–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Interaction between weak low frequency magnetic fields and cell membranes   总被引:12,自引:0,他引:12  
The question of whether very weak low frequency magnetic fields can affect biological systems, has attracted attention by many research groups for quite some time. Still, today, the theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely low frequency (ELF) magnetic fields on the transport of Ca(2+) was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested two quantum mechanical theoretical models that assume that biologically active ions can be bound to a channel protein and influence the opening state of the channel. Vesicles were exposed for 30 min at 32 degrees C and the calcium efflux was studied using radioactive (45)Ca as a tracer. Static magnetic fields ranging from 27 to 37 micro T and time varying magnetic fields with frequencies between 7 and 72 Hz and amplitudes between 13 and 114 micro T (peak) were used. We show that suitable combinations of static and time varying magnetic fields directly interact with the Ca(2+) channel protein in the cell membrane, and we could quantitatively confirm the model proposed by Blanchard.  相似文献   

10.
Extremely-low-frequency (ELF), low-intensity magnetic fields have been shown to influence cell signaling processes in a variety of systems, both in vivo and in vitro. Similar effects have been demonstrated for nervous system development and neurite outgrowth. We report that regeneration in planaria, which incorporates many of these processes, is also affected by ELF magnetic fields. The rate of cephalic regeneration, reflected by the mean regeneration time (MRT), for planaria populations regenerating under continuous exposure to combined DC (78.4 μT) and AC (60.0 Hz at 10.0 μT peak) magnetic fields applied in parallel was found to be significantly delayed (P ? 0.001) by 48 ± 1 h relative to two different types of control populations (MRT ? 140 ± 12 h). One control population was exposed to only the AC component of this field combination, while the other experienced only the ambient geomagnetic field. All measurements were conducted in a low-gradient, low-noise magnetics laboratory under well-maintained temperature conditions. This delay in regeneration was shown to be dependent on the planaria having a fixed orientation with respect to the magnetic field vectors. Results also indicate that this orientation-dependent transduction process does not result from Faraday induction but is consistent with a Ca2+ cyclotron resonance mechanism. Data interpretation also permits the tentative conclusion that the effect results from an inhibition of events at an early stage in the regeneration process before the onset of proliferation and differentiation. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Potassium ion influx was measured by monitoring 42KCI uptake by Chinese hamster ovary (CHO) cells grown in suspension culture and exposed in the culture medium to 60–Hz electromagnetic fields up to 2.85 V/m. In the presence of the field CHO cells exhibited two components of uptake, the same as previously observed for those grown under normal conditions; both these components of influx were decreased when compared to sham-exposed cells. Although decreases were consistently observed in exposed cells when plotted as logc of uptake, the differences between the means of the calculated fluxes of exposed and sham-exposed cells were quite small (on the order of 4–7%). When standard deviations were calculated, there was no significant difference between these means; however, when time-paired uptake data were analyzed, the differences were found to be statistically significant. Cells exposed only to the magnetic field exhibited similar small decreases in influx rates when compared to sham-exposed cells, suggesting that the reduction in K+ uptake could be attributed to the magnetic field. Additionally, intracellular K+ levels were measured over a prolonged exposure period (96 h), and no apparent differences in intracellular K+ levels were observed between field-exposed and shamexposed cultures. These results indicate that high-strength electric fields have a small effect on the rate of transport of potassium ions but no effect on long-term maintenance of intracellular K+.  相似文献   

12.
The possibility that weak, ac and dc magnetic fields in combination may affect binding equilibria of calcium-ions (Ca2+) was investigated with two metallochromic dyes as calcium-binding molecules: murexide and arsenazo III. Calcium-dye equilibria were followed by measuring solution absorbances with a fiber-optic spectrophotometer. A Ca(2+)-arsenazo solution was also used indirectly to monitor the binding of Ca2+ to calmodulin. Parallel, ac and dc magnetic fields were applied to each preparation. The ac magnetic field was held constant during each of a series of experiments at a frequency in the range between 50 and 120 Hz (sine wave) or at 50 pps (square wave) and at an rms flux density in the range between 65 and 156 microT. The dc magnetic field was then varied from 0 to 299 microT at 1.3 microT increments. The magnetic fields did not measurably affect equilibria in the binding of metallochromic dyes or calmodulin to Ca2+.  相似文献   

13.
V. V. Lednev has proposed a mechanism that he suggests would allow very weak magnetic fields, at the cyclotron resonance frequency for Ca2+ ions in the earth's field, to induce biological effects. I show that for four independent reasons no such mechanism can operate.  相似文献   

14.
Summary Using patch-clamp techniques, we have studied Ca2+-activated K+ channels in the basolateral membrane of freshly isolated epithelial cells from rabbit distal colon. Epithelial cell clusters were obtained from distal colon by gentle mechanical disruption of isolated crypts. Gigaohm seals were obtained on the basolateral surface of the cell clusters. At the resting potential (approximately –45 mV), with NaCl Ringer's bathing the cell, the predominant channels had a conductance of 131±25 pS. Channel activity depended on voltage as depolarization of the membrane increased the open probability. In excised inside-out patches, channels were found to be selective for K+ over Na+. Channel activity correlated directly with bath Ca2+ concentration in the excised patches. Channel currents were blocked by 5mm TEA+ and 1mm Ba2+. In cell-attached patches, after addition of the Ca2+ ionophore A23187, which increases intracellular Ca2+, open probability was markedly increased. Channel activity was also regulated by cAMP as addition of 1mm dibutyryl-cAMP in the bath solution in cell-attached patches increased channel open probability over 20-fold. Channels that had been activated by cAMP were further activated by Ca2+. We conclude that the basolateral membrane of epithelial cells from descending colon contains a class of potassium channels, which are regulated by intracellular Ca2+ and cAMP.  相似文献   

15.
The purpose of this study was to determine the effect of extremely low frequency and weak magnetic fields (WMF) on cardiac myocyte Ca2+ transients, and to explore the involvement of potassium channels under the WMF effect. In addition, we aimed to find a physical explanation for the effect of WMF on cardiac myocyte Ca2+ transients. Indo‐1 loaded cells, which were exposed to a WMF at 16 Hz and 40 nT, demonstrated a 75 ± 4% reduction in cytosolic Ca2+ transients versus control. Treatment with the KATP channel blocker, glibenclamide, followed by WMF at 16 Hz exposure, blocked the reduction in cytosolic calcium transients while treatment with pinacidil, a KATP channel opener, or chromanol 293B, a selective potassium channel blocker of the delayed rectifier K+ channels, did not inhibit the effect. Based on these finding and the ion cyclotron resonance frequency theory, we further investigated the effect of WMF by changing the direct current (DC) magnetic field (B0). When operating different DC magnetic fields we showed that the WMF value changed correspondingly: for B0 = 44.5 µT, the effect was observed at 17.05 Hz; for B0 = 46.5 µT, the effect was observed at 18.15 Hz; and for B0 = 49 µT the effect was observed at 19.1 Hz. We can conclude that the effect of WMF on Ca2+ transients depends on the DC magnetic field level. Bioelectromagnetics 33:634–640, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
We investigated the effect of lysophosphatidic acid (LPA), a bioactive phospholipid, on the response in cytosolic free Ca2+ concentration ([Ca2+]i) to mechanical stress in cultured bovine lens epithelial cells. Spritzing of bath solution onto cells as mechanical stress caused marked increase in [Ca2+]i in the presence of LPA and this increase was concentration-dependent (1–10 μM), whereas neither addition of LPA alone nor the mechanical stress in the absence of LPA affected [Ca2+]i. The mechanical stress-induced increase in [Ca2+]i in the presence of LPA was inhibited by removing extracellular Ca2+ or by addition of Gd3+, a blocker of mechanosensitive cation channels, but not by nicardipine, thapsigargin, an inhibitor of endoplasmic reticulum-ATPase pump, or U73122, a phospholipase C inhibitor. These results show that LPA sensitises Ca2+ influx through cation-selective mechanosensitive channels, but does not sensitise Ca2+ release from intracellular stores, triggered by changes in mechanical stress. On the other hand, phosphatidic acid had less of a sensitising effect than LPA, and neither lysophosphatidylcholine nor chlorpromazine had any effect. Also Ca2+ mobilising agonists, ATP, histamine and carbachol, did not sensitise Ca2+ response to the mechanical stress. These results show that LPA sensitises mechanoreceptor-linked response in lens epithelial cells, suggesting that it plays a role in the development of cataracts due to increases in [Ca2+]i induced by mechanical stress.  相似文献   

17.
Observations recently reported by others indicate that a combination of a weak dc magnetic field and extremely-low-frequency ac magnetic field can produce resonant effects in biological systems. We report measurements of the effects of combined dc and ac magnetic fields on the dc current through channel-free planar phospholipid membranes. The combined dc-ac magnetic fields did affect the dc current through planar phospholipid membranes, but not in every membrane, and not consistently at the same values of magnetic flux density and frequency. None of our measurements showed resonant response akin to the cyclotron-like resonance reported in diatoms [Smith et al., 1987] and lymphocytes [Liboff et al., 1987].  相似文献   

18.
Plant cells maintain high Ca2+ concentration gradients between the cytosol and the extracellular matrix, as well as intracellular compartments. During evolution, the regulatory mechanisms, maintaining low cytosolic free Ca2+ concentrations, most likely provided the backbone for the development of Ca2+‐dependent signalling pathways. In this review, the current understanding of molecular mechanisms involved in Ca2+ homeostasis of plants cells is evaluated. The question is addressed to which extent the mechanisms, controlling the cytosolic Ca2+ concentration, are linked to Ca2+‐based signalling. A large number of environmental stimuli can evoke Ca2+ signals, but the Ca2+‐induced responses are likely to differ depending on the stimulus applied. Two mechanisms are put forward to explain signal specificity of Ca2+‐dependent responses. A signal may evoke a specific Ca2+ signature that is recognized by downstream signalling components. Alternatively, Ca2+ signals are accompanied by Ca2+‐independent signalling events that determine the specificity of the response. The existence of such parallel‐acting pathways explains why guard cell responses to abscisic acid (ABA) can occur in the absence, as well as in the presence, of Ca2+ signals. Future research may shed new light on the relation between parallel acting Ca2+‐dependent and ‐independent events, and may provide insights in their evolutionary origin.  相似文献   

19.
Exposure to ELF magnetic field tuned to Zn inhibits growth of cancer cells   总被引:2,自引:0,他引:2  
The effects of ELF alternating magnetic fields tuned to Zn(2+) on the growth of cancer cells with different status of p53 were investigated using a cell proliferation assay. Human cancer cells HeLa (cervix cancer, p53(+/+)), Saos-2 and Saos-2-His-273 (osteosarcoma, p53(-/-) and p53 His-273 mutant, respectively), H1299tTA and H1299tTA-His175 (lung carcinoma, p53(-/-) and p53 His-175 mutant), and normal human fibroblasts VH-10 (p53(+/+)) were used. Exposure parameters were calculated for the first harmonic of Zn(2+) based either on the magnetic parametric resonance (MPR) model of Lednev or the ion parametric resonance (IPR) model of Blanchard and Blackman. ELF exposure was for 72 and 96 h. The vertical alternating field was 20 Hz at amplitudes of either 38.7 or 77.4 microT (peaks, IPR or MPR, respectively). The vertical static magnetic field was 43 microT, and the horizontal static magnetic field was zeroed. Treatments of cells with PRIMA-1 and gamma-rays were used as positive controls. Growth inhibition was observed in cells after exposure to ELF at 38.7 microT. Inhibition of HeLa, VH-10, and Saos-2-His-273 cells was statistically significant, P=0.0003, 0.02, and 0.006, respectively. No consistent ELF effects following exposure 77.4 microT were seen. PRIMA-1 inhibited the growth of all cell lines with the strongest effect in mutant p53-carrying cell line H1299tTA-His175. The effects of gamma-rays were relatively weak, suggesting that the cell proliferation assay under conditions employed in this study is not very sensitive to apoptosis. In conclusion, ELF under conditions of exposure tuned to Zn(2+) according to the IPR model inhibited the growth of cancer and normal cells. No clear relationship of the observed growth inhibition to p53 status was found. Further experiments, using complementary techniques, are required to test whether p53 reactivation by ELF is feasible.  相似文献   

20.
Ca(2+) is the pivotal second messenger for induction of defense responses induced by treatment of pathogen-derived elicitor or microbial infection in plants. However, molecular bases for elicitor-induced generation of Ca(2+) signals (Ca(2+) transients) are largely unknown. We here identified cDNAs for putative voltage-dependent Ca(2+)-permeable channels, NtTPC1A and NtTPC1B, that are homologous to TPC1 (two pore channel) from suspension-cultured tobacco BY-2 cells. NtTPC1s complemented the growth of a Saccharomyces cerevisiae mutant defective in CCH1, a putative Ca(2+) channel, in a low Ca(2+) medium, suggesting that both products permeate Ca(2+) through the plasma membrane. Cosuppression of NtTPC1s in apoaequorin-expressing BY-2 cells resulted in inhibition of rise in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in response to sucrose and a fungal elicitor cryptogein, while it did not affect hypoosmotic shock-induced [Ca(2+)](cyt) increase. Cosuppression of NtTPC1s also caused suppression of cryptogein-induced programmed cell death and defense-related gene expression. These results suggest that NtTPC1s are involved in Ca(2+) mobilization induced by the cryptogein and sucrose, and have crucial roles in cryptogein-induced signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号